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 Fourier Integral Inequalities and

 Applications

 1. Let # denote the Fourier transform defined by

 (4*f)(x) = J e 2irÌXyf (y)dy, X e ]R ,
 -09

 where f belongs to a suitable function space for which the operator exists. If

 Lp , p >_ 1, denote the usual Lebesgue spaces with norm (Mlp. then it is obviou

 that L (R) L (R) is bounded and Plancherel's theorem shows that
 2 2

 # L (R) ■+■ L 2 (R) is hounded . It is t-hen easy to deduce from the RiP*»-Thcrin

 interpolation theorem that the Hansdorf f-Young inequality jļ^fļļ f < ļļfļļ

 1 < P < 2, holds, where now and in the sequel p' denotes the conjugate index of

 p and the two are related by p + p' » pp, with p' - 1 if p » ®.

 There are many weighted extensions of this inequality of the form

 (1.1) (I 00 „00 1 (*>00 1«*,)17' <C (j"»W I, , 00 00

 for some p,q, 1 < p, q-<« and u and v are non-negative weight functions.

 For example, if u = 1 and v(x) - |x|q~2, and p - q > 2, or v = 1,

 u(x) ■ I * ! » 1 < P < 2, q ■ p, in (1.1) one obtains Titchmarsh's extensions of

 the Hansdorf f-Young inequality [21]. On the other hand, if u « v = 1 . and p >2

 then there exists a function for which the right side of (1.1) is finite, but 4*f

 cannot exist as a function [18; p. 34 (4,13)]. This phenomena is reflected by
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 by other integral operators and it raises the following question:

 Given a linear operator T defined on some suitable function space, what are

 necessary and sufficient conditions on non-negative weight functions u and v,

 such that

 (1.2) ^ ļu(x) ļ(Tf)(x) ļqdx^ £ C ^jv(x) ļf (x) |Pdx^ ,

 where 1 <_ p, q <_ 00 and fi c ]Rn ?

 In this note we consider this question when n = 1 and T is the Hardy

 operator (and its dual) , the Laplace transform and the Fourier transform.

 In the next section we discuss the solution of this problem for the Hardy

 operator and show that the case q > p follows via a simple lemma from the q ■ p

 case. The principal but partial results for the Laplace and Fourier transform are

 also given there. The final section contains some applications. Specifically an

 inequality related to Hilbert' s inequality is given and a generalization of the

 Heisenberg-Weyl inequality is obtained.

 Throughout C denotes a constant independent of the function in question, but

 may be different at different occurrences. Sometimes we also write for (-"»«O,

 » and (0,»).

 2. Let P denote the Hardy operator and P its dual, that is,

 (Pf)(x) » J f (t)dt, (Pf ) (x) » J f(t)dt, x > 0,
 0 x

 where, for the purpose of the discussion we take without loss of generality f ^ 0.

 It is now well known [3] [12] [19] [20] that (1.2) holds with T = P or T « P with

 p » q 1 and ß » R+ , if and only if for all s > 0
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 (]"•-*■>*) ' q 1 ^ ( X i u(x>ķ j e"ydy J ***) q 1 c ^ ¿ { v(x)dx " Cv< ' X 0 s-h J s-h

 provided s is a Lebesgue point of v. This implies the result.

 Although a complete characterization cf weights for the Laplace transform

 seems to be not known, it has recently been shown by E. Sawyer that under very

 mild conditions on the weight u such a characterization exists.

 The question of characterizing weights u,v when T * the Fourier transform

 was raised in [13] . Recently several authors independently obtained significant

 results in this direction [14] , [15] , [9] , [11] . In order to state the result we

 introduce some notation.

 Given a Lebesgue measurable function, then the equiraeasurable decreasing

 * II-
 rearrangement of f is defined by f (t) = inf{y > 0: mux e R:|f(x)ļ II- > y}) <_ t},

 t > 0 where m denotes Lebesgue measure. The symmetrically decreasing re-
 6 *

 arrangement of f is then defined by f (t) » f (2t) if t > 0 and extended

 as an even function on R . We further write (u,v) e F(pfq) 1 < p <_ q <_ <*>

 if

 ✓ fl/(2s) ' 1/q / fs/z , 'l/p'

 sup ^ j u (t) dty ^ / j (1/v) (t)P dt J < « ,

 (with the usual modification if p = 1 and /or q = 00 . )

 Theorem 2.3. ([9], [11], [14], [15], [A]) If (u,v) e F(p,q), ljc p <. q <. », p<

 then

 0« |u(x) (4*f) (x) ļqdx ' J 1/q - C( / f00 |v(x)f (x) |pdx ' ) 1/p |u(x) (4*f) (x) ļqdx J - C( |v(x)f (x) |pdx )
 -00

 37



 / fœ ' l/q , ť° v I/p

 (2.4) / ^ / j u(x) {ßt ) (x^dx J <_ C / ^ j v(x)f(x)Pdx j ' ^ 0 ^ j 0 '
 If in addition it is assumed that u is decreasing arid v increasing, then

 (2.3) is necessary and sufficient for (2 .4).

 We note again that this result much as in the case of the Hardy operator may

 be obtained from the case q * p via Lemma 2.1 (i). For the case p = 1 the

 following result is sharper.

 Theorem 2.2. Let 1 <_ q < » , then (2.4) with p = 1 holds if and only if

 (2.5) supt (Ai) (8q) l^/vis) < ® ,
 s>0

 with the obvious modification if q » 00 .

 Proof. The first part is immediate since

 / fœ / f00 ' í ' / f" ' ^/<1
 ( I u (x) f / j e~xyf(y)dy J dx J <1 f(y)/ / e~xyqu(x)dx J dy ^0^0 ' ' 0^0

 <_ C j v(y)f(y)dy
 0

 by Minkowski's integral inequality and (2.5).

 Conversely, let f(y) » *(s_h s+h)^^^)» h > 0 and s - h > 0 ,

 where X denotes the characteristic function. Then (2.4) with p * 1

 becomes

 (f uU) [ir is_h e"ltydy]'x) q±c(àí ,Wd") • 0 s-h

 As h + 0, Fatou's lemma implies that

 38



 replaced by
 / r" ' p/q-i

 u(x) ( j u(c)dtj
 X

 But then an integrating

 (fuu> ^ ^ 1/p ^ 1/p' s ^ x ^ ^ 0

 / r ' 1/q ( ? . ' 1/pf
 = (q/p)i/'P u(t)dt J ' ^ ( Jv(x) P . ^pdxy <_ c < ®

 - • n Q «ļ»

 The boundedness of P: L^(1R ) ■* ) , p < q follows also from the case q * p
 in the same way, only now one uses (i) of Lemma 2.1 .

 These extensions using a different proof may be found in [5] and [2].

 Characterizations of weights for the Hardy operator in the case where 0 < q < p

 were recently obtained by E. Sawyer [17], but there the situation is not as simple.

 Next, we consider the Laplace transform defined by

 c°°

 C^f)'(x) » j e~Xyf(y)dy, x > 0 ,
 0

 where again for the purposes of our discussion we take without loss of generality

 f 0. The following partial result is known:

 Theorem 2.1« [1; Theorem 2.4] Suppose 1 <_ p <_ q <_ 00 ,

 al/s u(x)dx v J 1/q ^ , j rS v(x) ,, ' " dx ' J 1/p* u(x)dx J ^ j v(x) ' " dx J < »

 and for some 3, 0 g 1

 sup /{" ^ 1/q( ļV(1-6)>,','/sv(xfp'/',dx) 1/P' « - ^ 1/s s

 then
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 IP ļ u(x) ( ļ u(t)dt ' h(x)Pdx 2^ h(y>PCq/p> ( ^ ļ u(t)dt^ , 0^0/ ^ 0 '
 so that

 h(y) <_ (p/q)lyřp I^j u(t)dt^

 Therefore

 a« u(x)h(x)qdx ' J 1/q » ( ^0 / I c® u(x)h(x)ph(x)q pdx ' ) 1/q u(x)h(x)qdx J » ( I u(x)h(x)ph(x)q pdx )
 v ^0

 <_ ( fuMhM" ( ^ |*u(c)dt^ 0 ^ 0 ' '

 • (p/q)1/p-l/qI

 which proves this part of the Lemma.

 For the second part one denotes the right integral by JP and observes that for

 y > 0

 Í00 u(x) í J ļia u(t)dt' p/q -1 h(x)pdx = (p/q)h(y)pļ / j f 00 u(t)dt ' ' p/q u(x) í J u(t)dt' h(x)pdx = (p/q)h(y)pļ / j f u(t)dt '
 y x y '

 Then one proceeds as before.

 To show now that P: LP(H+) Lq(lR+) , 1 <_ p <_ q <_ » is bounded one uses

 Lemma 2.1 (ii) with h(x) » (Pf ) (x) . Then

 ^j°°u(x)(Pf)(x)qdx^ /q< (p/q)1/p""1/q ^ u(x) ^ I u(t)dt^P/q (Pf)(x)pdx^ /P

 Üm v(x)f (x)Pdx ' J 1/p v(x)f (x)Pdx J

 where the last inequality follows from the case q - p, provided (2.1) holds with u
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 (C® ļ u(x)dxj ' l/p ( y f S v(x) P , ' , P dx s j l/p' (C® ļ u(x)dxj ( f v(x) P ' P dx j £ C < »,

 respectively

 (2.2) ( ^ fu(x)dx)1/P ' ^ v(x)"p,/pdxV/P <_ C < ® , ^ 0 ' s

 with the obvious modification in the second integral of (2.1) and (2.2) if p = 1.

 Observe that if one takes u(x) = x r ' v(x) = x r ^+P, r > 0 or in case

 T = P, u(x) « xr ' v(x) = xr r > 0 one obtains the celebrated inequalities

 of Hardy [7; 245-246]. The importance of these inequalities and their

 generalizations lies in the fact that the Marcinkiewicz interpolation theorem and

 its weighted generalizations are consequences of them. (See e.g. [10] , [8] , [16] , [9] . :

 The following elementary Lemma shows that the sufficiency part of the result for

 the Hardy operator and its dual, as well as those for the Laplace transform, extends

 easily to the case q > p.

 Lemma 2.1. Let h and u be non-negative functions on ]R+ and 0 < p < q < ®.

 (i) If h is decreasing, then

 (ļ u(x)h(x)qdxV/q < (p/q)1/p"1/q H u (x) ( jXu(t)dt)P/q 'i(x)pdx)1/P ^ . 0 0 ^0 ' ^
 (ii) If h is increasing, then

 a09 u(x)h(x)qdxj ' l/q <_ (p/q) i / P i / q^ / f00 u(x)^j / f"0 u(t)dt^ p/q -1 h(x)Pdx^ . l/p u(x)h(x)qdxj ' <_ (p/q) i / P i / q^ / u(x)^j / u(t)dt^ h(x)Pdx^ .

 Proof, (i) We assume without loss of generality that the integral on the right

 is finite. We denote it by IP. Then for any y > 0 one obtains an integrating
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 Moreover, if u and v are even functions u(t) decreasing for t > 0 and

 $ ©
 v(t) increasing for t > 0, that is u = u and 1/v = (1/v) , then

 (u,v) e F(p,q) is necessary and sufficient for (2.6).

 3. As a consequence of Theorem 2.2 we have

 Corollary 3.1

 í f (i?u) (x+y) f (x) f (y)dxdy <_ C ( v(x)f(x)dxV'
 0 0 U '

 if and only if (2.5) holds with q = 2.

 Proof . The left side of (3.1) can be written as

 f f f (x)f (y) ( e~(x+y)tu(t)dt) dxdy = f u(t) (if) (t)2dt <_ C f' v(x)f(x)dx>'
 00^0 ' 0 ^0 '

 Here the last inequality holds if and only if (2.5) is satisfied. Specifically

 taking u(x) » x^ ' v(x) « x , A > 0 then (2.5) is satisfied with q « 2

 and Corollary 3.1 yields

 rr^-y<_c(iv-£«.)2 0 N o o 0 N o

 This inequality should be compared with Hilberts inequality [7; p. 226].

 If S is the Stielt jes transform defined by

 ,00

 (Sf ) (x) = ' dy , f > 0, x > 0 ,
 XT y

 0

 then one obtains in the same way
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 Corollary 3.2

 f OO »00

 j u(x) (Sf) (x)dx <_ C v(x)f(x)dx
 0 0

 if and only if sup(Su) (s)/v(s) < « .
 8>0

 In [4], Theorem 2.3 was applied to obtain new representation theorems for the

 Laplace transform via weighted Hardy spaces. Here we use it to give a weighted

 extension of the Heisenberg-Weyl inequality.

 Fundamental to Heisenberg' s uncertainty principle is the inequality

 j ļf(x)ļ2dx^ 4ir^| x2|f(x)|2dx^ ^ j y2| (<5?f) (y) [2dy^
 ' - OO '<00

 2
 where E e L (K) . As a corollary to Theorem 2.3 we prove

 2
 Corollary 3.3. If (l/u,v) e F(p,q), If. p, q < 00 and f e L (H) , not

 identically zero, then |ļf ||2 <_ C|ļxf ||^q.í|y(#f) ||v>p, where ügl!w^r = líwg||r .

 Proof. It sufficies to prove this result for f e S , the Schwartz space.

 Let g' denote the derivative of g, then for p £ q , by Holders inequality

 and Theorem 2.3

 |ļfļļ2 » j x(ļf (x) ļ2) 'dx <_ 2 j j xu (x) f (x) U f ' (x) /u (x) ļ dx
 -00

 < 2llxfHu,q'llf,ll1/u,q 1 cllxfllu,q'll^f,>ilv,P " Cllxfllu,q.l¡y(^)llv>p.

 If q < p, then p' < q* and since (l/u,v) e F(p,q) implies (l/v,u) e F(q',p')

 Plancherel's theorem and the same argument yields
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 .00

 libilo ■ M2 I2 J lyv(y)(W)(y)ļ|(^f),(y)/v(y)ļdy
 -CO

 <_2|lTe*>llV(PIU*fV|| 1/ViP. « 2¡|y(^f>ií v>p||

 i c||y(^f) II v>pttxfHu,<J. .

 which is the result .

 I am grateful to John J. Benedetto for providing a preprint of {6] where

 similar generalizations of the Heisenberg-Weyl inequality may be found. The

 proofs are, however, different.
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