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 A Unifying Principle in Real Analysis

 This note describes a unifying principle that can be used to deduce

 several fundamental theorems in real analysis. It involves the concept of

 a subordering of the real numbers and states that a subordering that is locally

 valid with respect to each point of an interval I coincides with the usual

 order on I. A number of applications are given followed by an extended

 version of the new theorem.

 First we define the concept of a subordering and introduce some notation.

 Let I be an interval in R. A transitive relation ft that preserves the

 natural order < will be called a subordering on I, i.e., ft is a subset

 of lxi satisfying:

 (a 1 ) If X ft y and y ft z then x ft z .

 (a 2) If x ft y then x < y .

 Here we use the standard notation x ft y if (x,y) e ft; and we write x (jt y

 if (x»y) 4ft. We call a subordering ft locally valid (with, respect to each

 point c of 1} if:

 {For V(c) then every of x ft c c c or such in c that I ft x there when . is x a deleted belongs neighborhood to V(c)

 V(c) of c such that when x belongs to V(c)

 then x ft c or c ft x .

 As usual, if V(c) is any neighborhood of c in I (say V(c) = J (1 I for

 some open interval J containing c) the deleted neighborhood V(c) is de-

 fined to be V(c) ' Cc 3 .

 * On leave from Mathematisches Institut der Universität Bayreuth,
 D-8S80 Bayreuth, West Germany.
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 At this point we make two conventions: First, every relation R

 appearing in this note is always assumed to preserve the natural ordering,

 i.e., ß is assumed tacitly to be a subset of < without mentioning this

 explicitly. Second, all functions in this note are defined on intervals.

 Example 1. Let f: I -»■ P be a differentiable function satisfying f' > 0 .

 Take the subordering ß on I to be

 X ß y « f(x) < f(,y) if X < y .

 Clearly, ß is locally valid. In fact, we have íí*lzíí£l > q for all
 X -c

 X in some deleted neighborhood V(c), because f'(c) >0.

 Example 2. Let a) a e G be any open covering of the compact interval

 I and take the subordering to to be

 the compact interval [x,y] has the finite
 xßy « <

 J covering property with respect to (ß a) a e g *

 Since each point c in I has an (.interval) neighborhood V(c), which is

 contained in some ü , the subordering ß is actually locally valid.

 Example 3. Let f: I 1R be continuous and nonzero on I. Then, it is

 clear that

 x ííy « sgn f(x) - sgn f(y) if x < y

 generates a locally valid subordering.

 From these examples one is tempted to believe that many different, locally

 valid suborderings exist. But appearances are deceptive.

 Theorem 1 . The natural order < is the only subordering that is locally

 valid on the interval I .

 (The proof that follows is based on the nested interval axiom. It is just as

 easy to base a proof of Theorem 1 on the least upper bound property (see Theorem 2).)
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 Proof. Let ft be any locally valid subordering on I and suppose there

 exist points x and y in I satisfying x < y as well as x #y . We

 X + v v 4-y

 consider the point - g and observe that not both relations, x ft ģ

 and *2^ ft y, can hold. Hence, we can find points Xj and y-j in I

 obeying ^ » Lx^ »y ^ ļ c [x,y] and y^ -xļ = . Continuing this

 process, we obtain a sequence ([xn,yn])n of nested intervals with the

 property

 (,) ' *n < J,n' "xn " ^ •
 Let c be the unique point that belongs to all [x ,yn]. Since ft is
 locally valid with respect to c,

 (2) x ft c or c ft x

 holds true for all x in some deleted neighborhood V(c) of c. Moreover,

 we have

 (3) [vV cv(c)

 for sufficiently large n. If c = x or c = y , we conclude that x ft y n n , n -'n

 using (2) and (3). Otherwise xn < c < yn, but then again by (2) and (3)

 it follows that x ftc as well as c ft y„ n . So in any case we n n

 deduce xn ft yp , contradicting (1). Thus, we have proved Theorem 1. □

 Taking Theorem 1 into account, we now review the three examples given above.

 First of all, we state that we have proved in Example 1 the monotonicity of f,

 in Example 2 the Heine-Borei theorem, and in Example 3 Bolzano's "Inter-

 mediate Value" theorem. Second, we notice that each of these classical results

 has been derived from a single principle. Moreover, our principle itself is a

 simple consequence of the nested interval axiom (or equivalently of the least

 upper bound property).
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 The following further examples illustrate that proofs based on Theorem 1

 are often simpler than proofs based on other principles.

 Example 4. Let f:[a,b] + ß be a regulated function, i.e., a function

 having one-sided limits f(c+) and f(.c-) at each point c in [a,b]. Con-

 sider the locally valid subordering ß on [a,b] given by

 x ßy » f([x,y]) is bounded.

 Our principle yields a ß b. Hence, every regulated function is bounded on

 compact intervals ,

 Example 5. Let f: I •+• R be a differenti able function satisfying

 m < f < M for some constants m,M, Consider the subordering ß on I

 generated by

 X ß y ® m < (x) < M if X < y J y-x y J

 » m(y-x) < f (y ) - f(x) < M(y-x) if x < y .

 Since m < f'(c) < M, we conclude that m < < ^ f°r x

 some deleted neighborhood V(c) of c . Applying Theorem 1 we see that

 m < < M if x < y- Hence, we have proved the mean value inequality.

 Example 6. Let I = [a,b] be a compact interval and let f be a continuous

 (or upper-semicontinuous) function on I that does not attain tis maximum. Then,

 for each c in I a point c' in I exists satisfying f(c) < f(c'). By

 continuity of f there is a neighborhood V(c) of c such that f(x)<f(c') for x

 in V(c) . Thus, we are motivated to introduce a locally valid subordering

 ß on I given by

 x ßy « there is a de f(I) satisfying f < d on [x,y] .

 Theorem 1 yields a Kb, which is impossible. It follows that a continuous
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 (or upper semicontinuous ) function on a compact interval* nas arr<xximum va Lue.

 Example 7. Let f be a continuous function from an interval I into R.

 For any positive number e we consider the relation R defined by

 {there for all is a x',y'e[x,y] 6>0 such that satisfying ¡f(x') - |x'-y'l<6. f(y')l < £ for all x',y'e[x,y] satisfying |x'-y'l<6.

 Clearly, fi is a locally valid relation. Bearing this in mind, it is easy

 to see that ft is transitive, i.e.-, a locally valid subordering. Hence, a

 continuous function is uniformly continuous on every compact interval.

 Example 3. Let f be a continuous function on the compact interval I.

 For any fixed positive integer n we consider the subordering ft on I

 given by

 Í there tp (y [x,y] ) = is f -»■ a ( y) piecewise R and satisfying - I <4- 1 inear - f I cp(x) < function ļ on = f

 [x,y] -»■ R satisfying cp(x) = f ( x),

 tp (y ) = f ( y) and I <4- - f I < ļ on [x,y] .

 Since f is continuous at c, we have on some neighborhood

 V(c) of c , Let X e V(c) and assume x< c (the case x > c is similar).

 Consider the linear function cp: [x,c] -► R determined by the conditions

 cp(x) = f(x), cp (c) = f(c) . Then, [cp - f ļ £ on [x,c] and thus x ßc .
 This shows that ft is a locally valid subordering. Applying Theorem 1 we

 see that a continuous function on a compact interval can be approximated ar-

 bitrarily closely by a piecewise-linear function.

 Example 9. Similarly let f be a regulated function defined on a compact

 interval I. We will show that f can be approximated uniformly from above by

 a decreasing sequence of step functions. Following standard arguments and using

 the boundedness of f ( I ) as a starting point it suffices to show: Given a

 positive integer n and a step function a: I -*■ R satisfying f _< a there
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 is a step function cp: I ■+ R such that f < ^ < a and j f- cp | < .

 Hence, we introduce the subordering í¿ on I

 there is a step function cp: [x,y] -»■ R which
 X ßy « j .

 satisfies f <_ cp < a and |f-cp|_< - on [x,y] .

 Using the fact that f has one-sided limits it is not hard to show that R is

 locally valid. Thus, a regulated function can be appro xi. mate d uniformly from

 above by a decreasing sequence of step- functions.

 Example 10. Finally, let f be a continuous real -valued function. Denote

 i+)
 by J ;(f;x,y) the upper (lower) integral of f over [x,y] divided by y - x.

 For any positive e

 x ft y « - e< J+(f;x,y) - J~(f;x,y) < e

 defines a locally valid subordering. Hence, a continuous function is integrable

 over every compact interval.

 In our opinion the suborderings described above are the most interesting

 ones to which Theorem 1 applies. Of course, there are other more or less natural

 examples. For instance, consider a closed differential f°rm w = Pdx + Qdy with
 2

 continuous coefficients P and Q in an open set ū c R and a continuous

 curve ì supported in H (compare [1 ;pp.56]) . Then

 x fty «m has a primitive along y | [x,y]

 defines a locally valid subordering on the domain of y .

 As a matter of fact, Theorem 1 shows that a "property K" concerning sub-

 intervals of a given interval is valid for all compact subintervals if

 i) "property R" is hereditary , i.e., if both [x,y] and [y,z] have "property ß",

 then [x,z] has .

 ii) "property R" is locally valid <
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 Looking at all those examples presented above, we believe that it is

 worthwhile to figure out what is the essence of Theorem 1. To do so, let us

 consider a chain (X,<), i.e., a set X linearly ordered by an antisymmetric

 relation < [2, p. 15] . We endow X with the order-topology which has a

 subbase consisting of all sets of the form [x ļ x < a j or lx ļ a < x 3

 for some a in X. As in the case X = F we call a relation ft on X

 a locally valid subordering if ft satisfies U 1 ) ~ (4 3).

 Theorem 2. A chain (X,<) endowed with the order-topology is connected iff

 < is the only svborderiyig that is locally valid on X .

 Proof . Let x,y e X , x < y and assume that X is connected, i.e., X is

 order-complete and has no gaps [2, pp. 57-58], Define the non-empty set

 A = {z J x ft z and x £ z <_ y 3 and consider sup A . In view of U 1 ) and

 {a 3) we have sup A = y. Using {A 3) again, we finally get x fty.

 On the other hand, if X is not connected, then X can be written as a

 disjoint union of two non-empty sets A^ ,A^ . Define the locally valid sub-

 ordering ft by setting ft= {(x,y) | x < y; x and y belong to the same A^ 3 •

 Then ft is strictly contained in < . □

 Since most theorems in real analysis rederived in this note actually do

 not involve orderi ngs, it might be interesting to have a substitute for Theorem 1

 and 2 where only topological properties enter. This can be done very easily.

 Let X be a topological space. We call an equivalence relation ^

 locally valid if (j4 3 ) is satisfied. Notice that ^ is locally valid iff ^

 is continuous in the sense that x'^y', whenever x ^ y and x'eV(x),

 y'eV(y) for some neighborhoods V(x) and V(y). An equivalence relation is

 called trivial if every two elements are equivalent.
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 Hieorem 3. A topological space X is connected iff every continuous equi-

 valence relation is trivial.

 Proof. If ^ is any continuous equivalence relation on X, then X is the

 disjoint union of its open equivalence classes [y |x^y]. Hence, X is

 connected iff ^ is trivial. □

 The broad applicability of our principle presented above leads us to

 suppose that it is known in the mathematical literature. But we were unable

 to find a suitable reference. Fortunately, during a stay at the California

 Institute of Technology, Professor T. M. Apoštol drew my attention to the

 article [3] . Actually, the article [3] and our note are

 closely related, but there is also a major difference . The principle presented

 in [3] is based on an extended Bol zano-Weierstrass theorem, whereas the prin-

 ciple described in this note depends critically on the topological concept of

 connectedness.

 Acknowledgements . I should like to thank Professor Aposto! for helpful
 comments and suggestions.
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