INROADS Real Analysis Exchange Vol. 8 (1982-83)

Jack Ceder, Department of Mathematics, University of California at Santa Barbara, Santa Barbara, CA 93106

Some Problems on Borel 1 Selections

A set-valued function ϕ from \mathbb{R}^n into the non-void subsets of \mathbb{R}^m (written $\phi : \mathbb{R}^n \to 2^{\mathbb{R}^m}$) has a Borel 1 selection f if f is a Borel 1 function such that $f(\mathbf{x}) \in \phi(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Below we summarize some of the important results and open problems in the search for Borel 1 selections in the context of Euclidean spaces (for simplicity's sake). [See [2] and [3] for a more detailed treatment as well as for reference documentation.]

By graph ϕ we mean the set $\{(x,y) : y \in \phi(x)\}$ and by $\phi^{-1}(V)$ we mean the set $\{x : \phi(x) \cap V \neq \Phi\}$. We say that ϕ is l.s.c. (1) if $\phi^{-1}(V)$ is an F_{cr} set whenever V is open.

<u>Theorem 1</u>. Let $\phi : \mathbb{R}^n \to 2^{\mathbb{R}^m}$. Then ϕ has a Borel 1 selection if any one of the following conditions is satisfied.

- (1) (Debs) ϕ is l.s.c. (1) and graph ϕ is a G_{δ} set.
- (2) (Kuratowski, Ryll-Nardzewski) φ is l.s.c. (1) and each
 φ(x) is closed.
- (3) (Ceder, Levi) ϕ is 1.s.c. (1) and each $\phi(x)$ is convex.
- (4) (Ceder, Levi) graph ϕ is an F_{σ} set.
- (5) (Coban, Engelking) $\phi^{-1}(F)$ is closed whenever F is closed and each $\phi(x)$ is closed.

Among the open problems for $\phi : \mathbb{R}^n \to 2^{\mathbb{R}^m}$ are the following: (a) does ϕ have a Borel 1 selection when ϕ is l.s.c. (1) and graph ϕ is an $F_{\Omega \hat{D}}$ set?

502

- (b) does ϕ have a Borel 1 selection when ϕ is l.s.c. (1) and each $\phi(x)$ is an arc?
- (c) does ϕ have a Borel 1 selection when $\phi = f^{-1}$ where f is an open Borel 2 function from \mathbb{R}^{m} into \mathbb{R}^{n} ?

There are examples to show that (1) f^{-1} need not have a Borel 1 selection when f is open and (2) ϕ need not have a Borel 1 selection when ϕ is l.s.c. (1) and each $\phi(x)$ is open.

<u>Theorem 2</u> (Ceder [1]). Let ϕ : $\mathbb{R} \to 2^{\mathbb{R}}$ and each $\phi(x)$ be closed and connected. Then, ϕ has a Borel 1 selection if and only if for each nowhere dense perfect set P, $\phi|P$ (the restriction of ϕ to P) has a Borel 1 selection.

Examples show that the above result does not hold for open intervals nor does it have any direct analogue for Borel 2 selections. Some interesting problems suggested by this result are the following:

- (a) can Theorem 2 be extended to apply to $\phi : \mathbb{R}^n \to 2^{\mathbb{R}^m}$.
- (β) can the connectedness of the values $\phi(x)$ be dropped.
- (y) does Theorem 2 work for perfect sets of measure 0.

Bibliography

- (1) J. Ceder, On Baire 1 Selections, Ricerche Mat. 30 (1981), 305-315.
- (2) J. Ceder, S. Levi, On the Search for Borel 1 Selections (to appear).
- (3) J. Ceder, On Some Questions on Borel 1 Selections (in preparation).

Received January 21, 1983