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 MULTIPLIERS OF SUMMABLE DERIVATIVES

 Theorem 8 of this note characterizes the system of

 all functions g such that the product fg is a

 derivative for each summable derivative f. If we require

 the product fg to be a summable derivative, we get the

 same system.

 In this way we obtain a solution of Problem 4 . 1

 posed in [1] by R.J. Fleissner.

 The word function means throughout this note a

 (finite) real function defined on a subset of R = (-<»,<»).

 For each interval J let D (J) be the system of all

 finite derivatives on J.

 Let a,b f R, a < b. Let g be a function defined

 on a set containing the interval J = [a,b] and let m

 be a natural number „ By v(m,J,g) or v(m,a,b,g) we

 shall denote the least upper bound of the set of all sums

 ^k=i lg(yk) " g(xk)l ' where a £ xi < à x2 < y2 £ **•
 < X < x y < b. Note that v(l,J,g) 3 is the oscillation of s m x Jm - 3

 g on J, v(m,J,g) £ v(m+l,J,g) for each m and that

 lim v(m,J,g) is the variation of g on J.
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 We shall keep the meaning of the symbols a,b,J,m

 throughout sections 1-3. The integrals are Perron integrals.

 JĻ. Let g e D( J) , T e (-» , | g(b) - g (a) | ) . Then there

 is a function f piecewise linear on J such that

 f (a) = f (b) = f f = 0, f |fļ = 2 and f fg > T.
 J J J

 Proof ; Let, e.g.# g(a) ^ g(b). Choose an e € (0,œ)
 such that g(a) -g(b) - 4,e > T. Set s = (a+b)/2. There

 c

 is a c Ç (a ,s ) such that J g > (c-a)(g(a)-e). There
 a

 is a 6 € (0,a>) such that a+ô < c, c+6 < s and that

 X y

 1 1 g ļ + 1 J* 9 I < e(c-a), whenever x € [a,a+ô] and
 a c

 y £ [c,c+ô]. Set Q = l/(c - a) . Let p be a function

 on J with the following properties: p = O on

 {a} U [c+6 fb] ,p=Q on [a+ô»c], p is linear on

 [a, a+ô] and on [c,c+ô]. Obviously J p = 1. Set
 a+ ô c+ 6 ^ c

 A = J (p-Q)g#C = J pg. Then J pg = Q J g+A+C.
 a c Ja

 It follows from the second mean value theorem that there is

 an x € ta»a+6] and a ye [c,c+6] such that

 x y

 A = -Q J g, C = Qj g. Hence J pg > g (a) -2c. In a
 a c J

 similar way we construct a nonnegative piecewise linear

 function q on J such that q = 0 on [a,s] U [b],

 f q = 1 and that J qg < g(b) + 2e. Now we set f = p-q.
 J J

 2. Let g 6 D(J), T Ç. (-<=,v(m,J,g)). Then there

 is a piecewise linear function f on J such that
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 X

 J ļfļ = 2m, ļj fļ <£l for each x e J, J f = 0 and
 J a j

 r fg > T.

 (This follows easily from )

 3^ Let f and g be measurable functions on J.

 Let J ļ f ļ < » and let g be bounded. Set
 J x

 A = max{|J fļ?x € J), B = v(m,J,g) . Then
 a

 U «Si g I ! |f| + A(B+ |ģ(b) I ) .
 J J

 Proof : Set C - j ļfj. There are y^ € J such that
 J

 y,

 a = y0 < y. -r - • . ^ ' y = b and that f ļ f I 1 - C/m. Set O 1 ' m J 1

 Yk-1

 sk = supMg(yk) - 9(x) 1 ' yk-1 < * < yk3 (* = 1, . . . ,m) ,

 P = ^=1 JYk f-'9-9(yk'>' 0 = ĄjTl 9(yk) JVk £.
 Yk-1 yk-l

 Obviously 1p| < sk J k |f| = ^ ^=i sk- Let
 yk-l

 e € (0,«>). There are x^ 6 ^yk-l'yk^ such that

 |g(yk) - g(xk) j >sk-e. since S^lgiy^) - g(*k) I Ź B,
 we have s^ £ B + me so that ļpļ ^ C(-^+ e),

 y ^ y
 ļpļ 'ģ CB/m. Since Q = I^^ļ(g(yk) - 9(yk+1) ) J y ^ f + g ( ym ) J* m f ,

 3. â

 we have ) Q ļ £A(B+ļg(b)ļ). Now we note that J fg = P + Q.
 J

 _4. Let f and g be measurable functions on the
 1 . x

 interval [0,11. Let f ļfļ < «, - X f f -» O (x -» 0+ ) and V X O

 let g be bounded. For each natural number n set
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 Vn = v(2n,2"n,2-I>f^#g) . Suppose that suPnvn < œ* Then
 i x
 - x f fg -» o (x -♦ 0+ ) . x Jo

 Proof : Set x^ = 2~k (k = 0,1,...)#
 S = sup{ļg(x)ļ? x € [0,1]}, V = supnVn> Let e € (O,®).
 Set ô = e/(2V+S+ 1). There is a natural number r such
 x x

 that F r I f I < 6 and that 3|f f| < 6x for each
 J0 J0

 x € (0,xr] . If k > r and if x^ < x ^ ^x^, then
 x , k
 I J ^1^3 ^x+xļc) ^ ^x^ so that, by 3^ with m = 2 ,

 ļj fgļ < xkVkô + ôxk(Vk + S ) ^ xk6(2V + S) < x^e. Now

 let x c (0,xrl . There is an n > r such that

 xn < x 2xn and, by what has just been proved,
 x 2x x

 IJ fg| < ZfennlJ k£9l + li fg| á Sfcīn exk = 2«n < 2cx.
 U xk xn

 This completes the proof.

 5. Let g f_ D([0,1]). Then

 (1) lim supx_łQf g(x) <

 £ g(0) + lim supn^œ v(l,2~n,2"n+1,g) .

 Proof: Let g' = q. For n = 1,2,... set x = 2~n ,

 Jn = [xn'2xn]' sn = 3UP 9,Jn'' Yn = ,G(2xn) " G(xn> >/xn-
 For each n we have v > inf g(J ^ ), hence n * ^ n

 sn ^ Yn + v( 1 , Jn ,g ) . Obviously lim sup ^ s =
 lim sup g(x) , y -> o(0) „ This easily implies (1).
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 JB. Notation. Let J = [0,1), D = D(J). By SD

 we denote the system of all functions f € D for which

 r If I < ». For each system Q of functions on J let
 J

 M(Q) be the system of all functions g on J such that

 fg 6 Q for each f 6 Q. Let Z be the system of all

 functions g on J such that fg Ç D for each f ř SD.

 Let W be the class of all functions g on J such that

 (2) lim sup^ v(2n,x+ 2~"n,x+ 2"~n+1,g) < « Iļ-vCO

 for each x Ç. [0,1)

 and

 (3) lim supn-łfl# v(2n,x - 2~n+1,x - 2n,g) < <*>

 for each x Ç (0,1] .

 Remark. The inequality in (2) is fulfilled, if

 lim sup x+ ļ (g(y) - g(x) )/(y - x) ļ <® .

 1_. Let g € D fi W. Then g is bounded.

 (This follows easily from _5. )

 J3. We have Z = D fi W = M(SD)„

 Proof : I. Let g € Z. It is obvious that g 6 D.

 Suppose that, e.g., (2) fails for x = 0. Set

 V = vi 2n,2~n,2~n+1,g) . There are integers r, such that
 n K
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 1 < r, 12 < r0 < „ « » and that V > k for each k. Choose 12

 rk
 a k and set m = 2 , a = 1/nu

 Since v(m,a,2a,g) = V , there is, by 2, a function
 k

 h piecewise linear on J such that h = 0 on

 [0,a] u [2a, 1] , J |hļ = 2m, J h = 0, J hg > k2 and
 J J J

 X

 that ļ I* h ļ ¿ 1 (X f J) . It is easy to see that
 0 ~

 ļf hļ £ mx (x £ J). For each k construct such a and
 O

 2 ^ oc

 h and set f^ = ah/k . Further define f =
 oo 9

 Obviously J ļfļ = 2/k < ». If k, a and h are
 J x x 2

 as above and if x € [a, 2a] , then ļf fļ = ļ f f, ļ ¿ x/k
 2a 2a O

 and f fg = f f. g > a. We see that f 6 SD and that
 a a k

 fg f? D. This contradiction shows that g £ W. Hence

 Z c D n W.

 II. Let g € D O W and let f € SD. By T_, g

 is bounded. Set f^ = f-f(O). It follows from 4 that
 X X

 - f f,g -♦ 0. Hence - P fg -» f(0)g(0) (x -» Of). This
 x "o 0

 shows that fg Ç D. Obviously f I f g ! < whence
 0 J

 fg € SD, g € M(SD), D fi W c M(SD) .

 III. It is easy to see that M(SD) c z. This completes

 the proof,

 _9. Let g € M (SD) . Then g is bounded and

 approximately continuous .
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 Proof : The boundedness of g follows from and

 1_. We see, in particular, that g £ SD. Therefore
 2

 g € D. According to a well-known theorem (see, e„g., [1],

 Theorem 3.3) g is approximately continuous.

 Remark . R.J. Fleissner described in [2] the system

 M(D) . His characterization involves the notion of an

 improper Lebesgue-Stielt jes integral. It is, however,

 possible to characterize ' M(D) in the following way which

 is analogous to our description of M(SD): A function

 g £ D belongs to M(D) if and only if

 lim sup ^ var(x+ 2~n,x+ 2_n+^,g) < »

 for each x Ç [0,1)

 and

 , . , „-n+1 0-n « .
 , lim . supn_+œ var(x , - 2 ,x-2 ,g)<c> « .

 for each x £ (0,1]

 (where var has the usual meaning). This assertion

 will be proved elsewhere.
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