Real Analysis Exchange Vol. 8 (1982-83)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLIERS OF SUMMABLE DERIVATIVES

Theorem 8 of this note characterizes the system of all functions g such that the product fg is a derivative for each summable derivative f. If we require the product fg to be a summable derivative, we get the same system.

In this way we obtain a solution of Problem 4.1 posed in [1] by R.J. Fleissner.

The word function means throughout this note a (finite) real function defined on a subset of $R = (-\infty, \infty)$. For each interval J let D(J) be the system of all finite derivatives on J.

Let $a, b \in \mathbb{R}$, a < b. Let g be a function defined on a set containing the interval J = [a,b] and let mbe a natural number. By v(m,J,g) or v(m,a,b,g) we shall denote the least upper bound of the set of all sums $\sum_{k=1}^{m} |g(y_k) - g(x_k)|$, where $a \leq x_1 < y_1 \leq x_2 < y_2 \leq \cdots$ $\leq x_m < y_m \leq b$. Note that v(1,J,g) is the oscillation of g on J, $v(m,J,g) \leq v(m+1,J,g)$ for each m and that $\lim_{m \to \infty} v(m,J,g)$ is the variation of g on J. We shall keep the meaning of the symbols a,b,J,m throughout sections 1-3. The integrals are Perron integrals.

<u>1</u>. Let $g \in D(J)$, $T \in (-\infty, |g(b) - g(a)|)$. Then there is a function f piecewise linear on J such that $f(a) = f(b) = \int_{J} f = 0$, $\int_{J} |f| = 2$ and $\int_{J} fg > T$.

<u>Proof</u>: Let, e.g., $g(a) \ge g(b)$. Choose an $\varepsilon \in (0,\infty)$ such that $g(a) - g(b) - 4\varepsilon > T$. Set s = (a+b)/2. There is a $c \in (a,s)$ such that $\int_{a}^{c} g > (c-a)(g(a)-e)$. There is a $\delta \in (0,\infty)$ such that $a + \delta < c$, $c + \delta < s$ and that $\left|\int_{-\infty}^{\infty} g\right| + \left|\int_{-\infty}^{\infty} g\right| < \varepsilon(c-a)$, whenever $x \in [a, a+\delta]$ $y \in [c, c+\delta]$. Set Q = 1/(c-a). Let p be a function on J with the following properties: p = 0 on $\{a\} \cup [c+\delta,b], p = Q$ on $[a+\delta,c], p$ is linear on $[a,a+\delta]$ and on $[c,c+\delta]$. Obviously $\int_T p = 1$. Set $A = \int_{-\infty}^{a+\delta} (p-Q)g, C = \int_{-\infty}^{c+\delta} pg. \text{ Then } \int_{-\infty}^{\infty} pg = Q \int_{-\infty}^{\infty} g + A + C.$ It follows from the second mean value theorem that there is an $x \in [a, a + \delta]$ and a $y \in [c, c + \delta]$ such that $A = -Q \int_{-\infty}^{\infty} g$, $C = Q \int_{-\infty}^{\infty} g$. Hence $\int_{-\infty} pg > g(a) - 2\epsilon$. In a similar way we construct a nonnegative piecewise linear function q on J such that q = 0 on $[a,s] \cup \{b\}$, $\int_{-q}^{q} g = 1$ and that $\int_{-q}^{-q} qg \langle g(b) + 2\epsilon$. Now we set f = p - q. 2. Let $g \in D(J)$, $T \in (-\infty, v(m, J, g))$. Then there

is a piecewise linear function f on J such that

 $\int_{J} |f| = 2m, |\int_{a}^{x} f| \leq 1 \text{ for each } x \in J, \int_{J} f = 0 \text{ and}$ $\int_{J} fg > T.$

(This follows easily from $\underline{1}$.)

3. Let f and g be measurable functions on J. Let $\int_{J} |f| < \infty$ and let g be bounded. Set $A = \max\{\left| \int_{-\infty}^{\infty} f \right| ; x \in J\}, B = v(m, J, g).$ Then $\left|\int_{T} fg\right| \leq \frac{B}{m} \int_{T} |f| + A(B + |g(b)|).$ <u>Proof</u>: Set $C = \int_{T} |f|$. There are $y_k \in J$ such that $a = y_0 < y_1 < \cdots < y_m = b$ and that $\int_{V_1}^{V_k} |f| = C/m$. Set $s_k = sup\{|g(y_k) - g(x)|; y_{k-1} < x < y_k\}$ (k = 1,...,m), $P = \sum_{k=1}^{m} \int_{Y_{k-1}}^{Y_{k}} f \cdot (g - g(y_{k})), Q = \sum_{k=1}^{m} g(y_{k}) \int_{Y_{k-1}}^{Y_{k}} f.$ Obviously $|P| \leq \sum_{k=1}^{m} s_k \int_{Y_{1-1}}^{Y_k} |f| = \frac{C}{m} \sum_{k=1}^{m} s_k$. Let $\varepsilon \in (0,\infty)$. There are $x_k \in (y_{k-1},y_k)$ such that $|g(y_k) - g(x_k)| > s_k - \epsilon$. Since $\sum_{k=1}^m |g(y_k) - g(x_k)| \le B$, we have $\sum_{k=1}^{m} s_k \leq B + m\epsilon$ so that $|P| \leq C(\frac{B}{m} + \epsilon)$, $|\mathbf{P}| \leq CB/m. \text{ Since } \mathbf{Q} = \sum_{k=1}^{m-1} (g(\mathbf{y}_k) - g(\mathbf{y}_{k+1})) \int_{\mathbf{y}_k}^{\mathbf{y}_k} f + g(\mathbf{y}_m) \int_{\mathbf{y}_k}^{\mathbf{y}_m} f,$ we have $|Q| \leq A(B + |g(b)|)$. Now we note that $\int_{T} fg = P + Q$.

<u>4</u>. Let f and g be measurable functions on the interval [0,1]. Let $\int_0^1 |f| < \infty$, $\frac{1}{x} \int_0^x f \to 0$ (x $\to 0+$) and let g be bounded. For each natural number n set

 $V_n = v(2^n, 2^{-n}, 2^{-n+1}, g). \text{ Suppose that } \sup_n V_n < \infty. \text{ Then}$ $\frac{1}{x} \int_0^x fg \to 0 \ (x \to 0+).$

5. Let
$$g \in D([0,1])$$
. Then

(1)
$$\limsup_{x \to 0+} g(x) \leq \leq g(0) + \limsup_{n \to \infty} v(1, 2^{-n}, 2^{-n+1}, g)$$
.

<u>Proof</u>: Let G' = g. For n = 1, 2, ... set $x_n = 2^{-n}$, $J_n = [x_n, 2x_n]$, $s_n = \sup g(J_n)$, $\gamma_n = (G(2x_n) - G(x_n))/x_n$. For each n we have $\gamma_n \ge \inf g(J_n)$, hence $s_n \le \gamma_n + v(1, J_n, g)$. Obviously $\limsup_{n \to \infty} s_n =$ $= \limsup_{x \to 0+} g(x)$, $\gamma_n \Rightarrow g(0)$. This easily implies (1). <u>6.</u> Notation. Let J = [0,1], D = D(J). By SD we denote the system of all functions $f \in D$ for which $\int_{J} |f| < \infty$. For each system Q of functions on J let M(Q) be the system of all functions g on J such that $fg \in Q$ for each $f \in Q$. Let Z be the system of all functions g on J such that $fg \in D$ for each $f \in SD$. Let W be the class of all functions g on J such that

(2)
$$\limsup_{n \to \infty} v(2^n, x + 2^{-n}, x + 2^{-n+1}, g) < \infty$$
for each $x \in [0, 1)$

and

(3)
$$\limsup_{n \to \infty} v(2^n, x - 2^{-n+1}, x - 2^n, g) < \infty$$
for each $x \in (0, 1]$.

Remark. The inequality in (2) is fulfilled, if

$$\lim \sup_{y \to x+} \left| (g(y) - g(x)) / (y - x) \right| < \infty$$

<u>7</u>. Let $g \in D \cap W$. Then g is bounded.

(This follows easily from 5.)

8. We have $Z = D \cap W = M(SD)$.

<u>Proof</u>: I. Let $g \in Z$. It is obvious that $g \in D$. Suppose that, e.g., (2) fails for x = 0. Set $V_n = v(2^n, 2^{-n}, 2^{-n+1}, g)$. There are integers r_k such that $1 < r_1 < r_2 < ...$ and that $V_{r_k} > k^2$ for each k. Choose a k and set $m = 2^{r_k}$, a = 1/m.

Since $v(m,a,2a,g) = V_{r_k}$, there is, by 2, a function h piecewise linear on J such that h = 0 on $[0,a] \cup [2a,1], \int_{J} |h| = 2m, \int_{J} h = 0, \int_{J} hg > k^2$ and that $|\int_{0}^{x} h| \leq 1$ ($x \in J$). It is easy to see that $|\int_{0}^{x} h| \leq mx$ ($x \in J$). For each k construct such a and h and set $f_k = ah/k^2$. Further define $f = \sum_{k=1}^{\infty} f_k$. Obviously $\int_{J} |f| = \sum_{k=1}^{\infty} 2/k^2 < \infty$. If k, a and h are as above and if $x \in [a,2a]$, then $|\int_{0}^{x} f| = |\int_{0}^{x} f_k| \leq x/k^2$ and $\int_{a}^{2a} fg = \int_{a}^{2a} f_k g > a$. We see that $f \in SD$ and that $fg \notin D$. This contradiction shows that $g \in W$. Hence $Z \subset D \cap W$.

II. Let $g \in D \cap W$ and let $f \in SD$. By $\underline{7}$, gis bounded. Set $f_1 = f - f(0)$. It follows from $\underline{4}$ that $\frac{1}{x} \int_0^x f_1 g \neq 0$. Hence $\frac{1}{x} \int_0^x fg \neq f(0)g(0) \ (x \neq 0+)$. This shows that $fg \in D$. Obviously $\int_J |fg| < \infty$ whence $fg \in SD$, $g \in M(SD)$, $D \cap W \subset M(SD)$.

III. It is easy to see that $M(SD) \subset Z$. This completes the proof.

<u>9</u>. Let $g \in M(SD)$. Then g is bounded and approximately continuous.

<u>Proof</u>: The boundedness of g follows from <u>8</u> and <u>7</u>. We see, in particular, that $g \in SD$. Therefore $g^2 \in D$. According to a well-known theorem (see, e.g., [1], Theorem 3.3) g is approximately continuous.

<u>Remark</u>. R.J. Fleissner described in [2] the system M(D). His characterization involves the notion of an improper Lebesgue-Stieltjes integral. It is, however, possible to characterize M(D) in the following way which is analogous to our description of M(SD): A function $g \in D$ belongs to M(D) if and only if

$$\limsup_{n \to \infty} \operatorname{var}(x + 2^{-n}, x + 2^{-n+1}, g) < \infty$$

for each
$$x \in [0,1)$$

and

$$\lim \sup_{n \to \infty} \operatorname{var}(x - 2^{-n+1}, x - 2^{-n}, g) < \infty$$
for each $x \in (0, 1]$

(where var... has the usual meaning). This assertion will be proved elsewhere.

REFERENCES

- R.J. Fleissner, Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, Vol. 2, No. 1 - 1976, 7-34.
- [2] _____, Distant bounded variation and products of derivatives, Fund. Math. XCIV (1977), 1-11.

Received February 11, 1983