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MULTIPLIERS OF SUMMABLE DERIVATIVES

Theorem 8 of this note characterizes theAsystem of
all functions g such that the product £fg is a
derivative for each summable derivative £f. If we require
the product fg to be a summable derivative, we get the

same system.

In this way we obtain a solution of Problem 4.1

posed in [1] by R.J. Fleissner,

The word function means throughout this note a
(finite) real function defined on a subset of R = (-w,»).
For each interval J 1let D(J) be the system of all

finite derivatives on J.

Let a,b é R, a < b, Let g Dbe a function defined
on a set containing the interval J = [a,b] and let m
be a natural number. By v(m,J,g) cr v(m,a,b,g) we
shall denote the least upper bound of the set of all sums
Z&Sl \g(yk)-g(xk)l, where a ¢ x; < y; £ X, < ¥y & ---
< x <y, ¢ b. Note that v(1,J,g) is the oscillation of
g on J, v(m,J,9) { v(im+1,Jd,9) for each m and that

lim cov(m,J,g) is the variation of g on J.
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we shall keep the meaning of the symbols a,b,J,m

throughout sections 1-3. The integrals are Perron integrals.

l. Let g € D(J), T € (-=,|g(b) -g(a)|). Then there
is a function f piecewise linear on J such that

f(a) = £(b) = £f=0, fl = 2 and fg > T.
j‘J IJ‘ ‘ j‘J

Proof: Let, e.g., g(a) > g(b). Choose an ¢ € (0,=)

such that g(a) -g(b) -4¢ > T. Set s = (a+Db)/2. There
c
is a c € (a,s) such that J' g > (c-a)(g(a) -¢). There
a
is a § € (0,») such that a+8§ < ¢, c+6 ¢ s and that
x Y
f gl + Lf g| < elc-a), whenever x € [a,a+5] and
a c

y € [e,c+8). Set Q= 1/(c-a). Let p be a function
on J with the following properties: p = 0 on
{a} U [e+8,b], P=Q on [a+6§,c], p is linear on

[a,a+8] and on ([c,c+8]. Obviously [ p = 1. Set
J
c

a+d c+d

A = j‘a (p-Ql)g, C = jc pg. Then ‘FJpg =Q j‘ag+A+c..

It follows from the second mean value theorem that there is

an x € [a,a+§] and a y € [c,c+ 8] such that

X Y
A=_Qj’ g, c=Qj' g. Hence ng>g(a)—2e. In a
a c J

similar way we construct a nonnegative piecewise linear

function @ on J such that g =0 on [a,s] U (b},

[ g=1 and that [ ag < g(b)+2e. Now we set f = p-q.
J J

2. Let g €D(J), T € (-=,v(m,J,g9)). Then there
is a piecewise linear function f on J such that
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x
JIgl =2m, |J £] ¢ 1 for each x € J, [ £=0 and
J a B J
j fg > T,
J .

(This follows easily from 1.)

3. Let £ and g be measurable functions on J.

Let [ |f| < = and let g be bounded. Set
J

x
A=max{|_]' fl;x € J}, B = v(m,J,g). Then
a

1] £9l < 2 IEREE la(b) ).

Proof: Set C = [ |f|. There are y, € J such that
J
41
a=yy<y, < -+ <y =b and that | lf] = ¢/m. Set
Yi-1

sp = sup{|g(y ) -g(x)|; vp 3 <x <y} (k=1,...,m),

Y: ' Y
_ m k _ m k
P=2_ £.0g-glyy)), @ =2, 9ly) [ £ .
Y1 Yr1
. m yk .
Obviously |P| ¢ T _; sy | |£] = & 5o, si- Let
Y1 .
€ € (0,o). There are Xy € (Yk-l'yk) such that

|g(yk) —g(xk)l > s, -e. Since a{zllg(yk) -g(xk)l < B,
we have Zkgl S £ B+me so that Pl < C(%+ €),

- Y Y
|P| < CB/m. Since Q = Z;::i(g(yk) - 9(¥y,q)) j'akf+ g(y) jamf.

we have |Q| ¢ A(B+ |g(b)|). Now we note that [ fg = P+Q.

J
4. Let f and g be measurable functions on the

1 X
interval [0,1]. Let 5 l£] < =, 312 Jf' f 4+ 0 (x » O+) and
O O

let g be bounded. For each natural number n set
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n .-ntl

Vn = v(2n,2- ,2 ,9). Suppose that suann < «®., Then
1 X
= fg =+ 0 (x » O+).
x g
} -k
Proof: Set Xy = 2 (k = 0,1,...),

S = sup{|g(x)|; x € [0,1]}, V = sup V_. Let ¢ € (0,®).

Set § = ¢/(2V+S+1). There is a natural number r such
X X

that [ T|£| < & and that 3|[ f| ¢ 6x for each
o] (0]

X £ (O.xr]. If k¥ > r and if Xy < X §‘2xk, then

I £] ¢S (x+x) ¢ ox, so that, by 3 with m = 2,

| f9]l < x V8 +5x (V. +S) ¢ x,6(2V+S) £ X, e. Now
k

let x ¢ (O,xr]. There is an n » r such that

x, < x¢ 2x and, by what has just been proved,

X - 2xk
|J 9] ¢ Zﬁ=n+1‘f
(6] xk

This completes the proof.

X
fg| + Ly fg| ¢ Z%:n ex) = 2ex < 2ex.

pY

n

5. Let g ¢ D([0,1]). Then

(1) lim sup, ., 9(x) ¢

n ,-n+l

< g(0) + 1im SUpP ., v(l,2 7,2 ,9) .
Proof: Let G' =g. For n=1,2,... set x = 270,
J, = [xn,2xn], s = sup g(Jn). Y, = (G(2xn)-G(xn))/kn.

For each n we have Y 2 inf g(Jn), hence

i 13 ] S
s, £ y,tVv(l.J .g9). Obviously lim sup .S

= lim supx*0+g(x), Yo Y +{0). This ecasily implies (1).
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6. Notation.

we denote the system of all functions

Let J = [0,1}, D = D(J). By SD

£f € D for which

[ |f] < ®». For each system Q of functions on J let
J _

M(Q) be the system
fg € Q for each f£
functions g on J

Let W be the class

(2)

lim SUP e

for

and

(3)

lim sup

for

Remark.

lim supy4x+

7. Let

vi2?,x -2~

g €DNW.

of all functions g on J such that

€ Q. Let Z Dbe the system of all
such that fg € D for each £ ¢ SD.
of all functions

g on J such that

n+

vi2®,x+ 270, x+ 2~ l,g) < =

each x ¢ [0,1)

n+l'x_.2n'g) < @

each x € (0,1]

The inequality in (2) is fulfilled, if

[ (g(y) =g(x))/(y-x)] < =

Then g 1is bounded.

(This follows easily from 5,)

8. We have 2

Proof: I. Let

Suppose that, e.qg.,

- V(zn'z-n -n+1

v 2

/9).

DNW

M(SD).

g € Z., It is obvious that g € D.

(2) fails for x 0. Set

There are integers such that

Iy
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1« ry < r, < ... and that Vr > k2 for each k. Choose
ry K
a kx and set m=2 , a= 1/m.

Since v{m,a,2a,g) = Vr , there is, by 2, a function
v k

h piecewise linear on J such that h = 0 on

(0,21 U 23,11, [ || = 2m, [ b= o0, thg > k? and
J

(Xx € J). It is easy to see that

[

x
that |[ h| ¢
X 0 -
|{ bl ¢ mx (x € J). For each k construct such a and
o S
- 2 ; =5
h and set £, = ah/k”. Further define f£ = Z&=1 £

Obviously IJ]f\ = Z&:l 2/'k2 < ». If k, a and h are

X x
as above and if x € [a,2a), then \f £] = |F-fk| < x/k2
o 00 —
2a 2a
and j fg = [ £,9 > a. We see that f € SD and that
a a

fg £ D. This contradiction shows that g ¢ W. Hence

ZcCcDnNWw.

IT. Let geDNW and let £ ¢ SD. By 7, g
is bounded. Set £, = f-£(0}). It follows from 4 that
1 X 1 X
= f.g »+ 0. Hence < [ fg = £(0)g(0) (x » O+). This
Xuo 1 X 0

shows that fg € D. Obviously [ |fg| < = whence
“J
fg € SD, g € M(SD), D N W © M(SD).

III. It is easy to see that M(SD) c Z. This completes

the proof.

9. Let g € M(SD). Then g is bounded and
approximately continuous.
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Proof: The boundedness of g follows from 8 and
7. We see, in particular, that g € SD. Therefore
g2 € D. According to a well-known theorem (see, e.g., [11,

Theorem 3.3) g 1is approximately continuous.

Remark. R.J. Fleissner described in [2] the system
M(D). His characterization involves the notion of an
improper Lebesgue-Stieltjes integral. It is, -however,
possible to characterize  M(D) in the following way which
is analogous to our description of M(SD): A function

g € D belongs to M(D) if and only if

n+

lim sup_, var(x+ 270, x+ 2”7 l,g) < @

for each x € [0,1)

and
lim sup_, var(x-—2—n+1,x-2'n,g) < @
for each x € (0,1]
(where var ... has the usual meaning). This assertion

will be proved elsewhere.
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