Real Analysis Exchange Vol. 8 (1982-83)

Jan Mařík, Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

MULTIPLIERS OF SUMMABLE DERIVATIVES

Theorem 8 of this note characterizes the system of all functions g such that the product $f g$ is a derivative for each summable derivative f. If we require the product $f g$ to be a summable derivative, we get the same system.

In this way we obtain a solution of Problem 4.1 posed in [1] by R.J. Fleissner.

The word function means throughout this note a (finite) real function defined on a subset of $R=(-\infty, \infty)$. For each interval J let $D(J)$ be the system of all finite derivatives on J.

Let $a, b \in R, a<b$. Let g be a function defined on a set containing the interval $J=[a, b]$ and let m be a natural number. By $v(m, J, g)$ or $v(m, a, b, g)$ we shall denote the least upper bound of the set of all sums $\sum_{k=1}^{m}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|$, where $a \leqq x_{1}<y_{1} \leqq x_{2}<y_{2} \leqq \ldots$ $\leqq x_{m}<y_{m} \leqq b$. Note that $v(1, J, g)$ is the oscillation of g on $J, v(m, J, g) \leqq v(m+l, J, g)$ for each m and that $\lim _{m \rightarrow \infty} v(m, J, g)$ is the variation of g on J.

We shall keep the meaning of the symbols a, b, J, m throughout sections 1-3. The integrals are Perron integrals.

1. Let $g \in D(J), T \in(-\infty,|g(b)-g(a)|)$. Then there is a function f piecewise linear on J such that $f(a)=f(b)=\int_{J} f=0, \int_{J}|f|=2$ and $\int_{J} f g>T$.

Proof: Let, e.g., $g(a) \geqq g(b)$. Choose an $\epsilon \in(0, \infty)$ such that $g(a)-g(b)-4 \epsilon>T$. Set $s=(a+b) / 2$. There is $a \quad c \in(a, s)$ such that $\int_{a}^{c} g>(c-a)(g(a)-c)$. There is a $\delta \in(0, \infty)$ such that $a+\delta<c, c+\delta<s$ and that $\left|\int_{a}^{x} g\right|+\left|\int_{c}^{y} g\right|<\varepsilon(c-a)$, whenever $x \in[a, a+\delta]$ and $y \in[c, c+o]$. Set $Q=1 /(c-a)$. Let p be a function on J with the following properties: $p=0$ on
\{a\} $\cup[c+\delta, b], p=Q$ on $[a+\delta, c], p$ is linear on $[a, a+\delta]$ and on $[c, c+\delta]$ 。 Obviously $\int_{J} p=1$. Set $A=\int_{a}^{a+\delta}(p-Q) g, C=\int_{c}^{c+\delta} p g$. Then $\int_{J} p g=Q \int_{a}^{c} g+A+C$. It follows from the second mean value theorem that there is an $x \in[a, a+\delta]$ and $a \quad y \in[c, c+\delta]$ such that $A=-Q \int_{a}^{X} g, \quad c=Q \int_{c}^{Y} g$. Hence $\int_{J} p g>g(a)-2 \varepsilon$. In a similar way we construct a nonnegative piecewise linear function q on J such that $q=0$ on $[a, s] \cup\{b\}$, $\int_{J} q=1$ and that $\int_{J} q g<g(b)+2 \epsilon$. Now we set $f=p-q$.
2. Let $g \in D(J), T \in(-\infty, v(m, J, g))$. Then there is a piecewise linear function f on J such that
$\int_{J}|f|=2 m,\left|\int_{a}^{x} f\right| \leqq 1$ for each $x \in J, \int_{J} f=0$ and $\int_{J} \mathrm{fg}>\mathrm{T}$ 。
(This follows easily from 1.)
3. Let f and g be measurable functions on J.

Let $\int_{J}|f|<\infty$ and let g be bounded. Set
$A=\max \left\{\left|\int_{a}^{x} f\right| ; x \in J\right\}, B=v(m, J, g)$. Then
$\left|\int_{J} f g\right| \leqq \frac{B}{m} \int_{J}|f|+A(B+|g(b)|)$.

Proof: Set $C=\int_{J}|f|$. There are $y_{k} \in J$ such that $a=y_{0}<y_{1}<\cdots<y_{m}=b$ and that $\int_{y_{k-1}}^{y_{k}}|f|=c / m$. set $s_{k}=\sup \left\{\left|g\left(y_{k}\right)-g(x)\right| ; y_{k-1}<x<y_{k}\right\} \quad(k=1, \ldots, m)$, $P=\sum_{k=1}^{m} \int_{y_{k-1}}^{y_{k}} f \cdot\left(g-g\left(y_{k}\right)\right), Q=\sum_{k=1}^{m} g\left(y_{k}\right) \int_{y_{k-1}}^{y_{k}} f$.
Obviously $\quad|P| \leqq \sum_{k=1}^{m} s_{k} \int_{Y_{k-1}}^{Y_{k}}|f|=\frac{C}{m} \sum_{k=1}^{m} s_{k}$. Let
$\varepsilon \in(0, \infty)$. There are $x_{k} \in\left(y_{k-1}, y_{k}\right)$ such that $\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right|>s_{k}-\epsilon$. Since $\sum_{k=1}^{m}\left|g\left(y_{k}\right)-g\left(x_{k}\right)\right| \leqq B$, we have $\sum_{k=1}^{m} s_{k} \leqq B+m \varepsilon$ so that $|P| \leqq C\left(\frac{B}{m}+\varepsilon\right)$, $|P| \leq C B / m$. Since $Q=\sum_{k=1}^{m-1}\left(g\left(y_{k}\right)-g\left(y_{k+1}\right)\right) \int_{a}^{y_{k}} \bar{f}+g\left(y_{m}\right) \int_{a}^{y_{m}} f$, we have $|Q| \leqq A(B+|g(b)|)$. Now we note that $\int_{J} f g=P+Q$.
4. Let f and g be measurable functions on the interval $[0,1]$. Let $\int_{0}^{1}|f|<\approx, \frac{1}{x} \int_{0}^{x} f \rightarrow 0(x \rightarrow 0+)$ and let g be bounded. For each natural number n set
$v_{n}=v\left(2^{n}, 2^{-n}, 2^{-n+1}, g\right)$. Suppose that $\sup _{n} V_{n}<\infty$. Then $\frac{1}{x} \int_{0}^{x} f g \rightarrow O(x \rightarrow 0+)$ 。

Proof: Set $x_{k}=2^{-k}(k=0,1, \ldots)$,
$s=\sup \{|g(x)| ; x \in[0,1]\}, V=\sup _{n} V_{n}$. Let $\varepsilon \in(0, \infty)$. Set $\delta=\epsilon /(2 \mathrm{~V}+\mathrm{S}+1)$. There is a natural number r such that $\int_{0}^{x_{r}}|f|<\delta$ and that $3\left|\int_{0}^{x} f\right| \leqq \delta x$ for each $x \in\left(0, x_{r}\right]$. If $k>r$ and if $x_{k}<x \leqq 2 x_{k}$, then
$\left|\int_{x_{k}}^{x} f\right| \leqq \frac{\delta}{3}\left(x+x_{k}\right) \leqq \delta x_{k}$ so that, by $\underline{3}$ with $m=2^{k}$,
$\left|\int_{x_{k}}^{x_{k}} f g\right| \leqq x_{k} V_{k} \delta+\delta x_{k}\left(V_{k}+S\right) \leqq x_{k} \delta(2 V+S) \leqq x_{k} \varepsilon$. Now
let $x \in\left(0, x_{r}\right]$. There is an $n \geqslant r$ such that
$\mathrm{x}_{\mathrm{n}}<\mathrm{x} \leqq 2 \mathrm{x}_{\mathrm{n}}$ and, by what has just been proved,
$\left|\int_{0}^{x} f g\right| \leqq \sum_{k=n+1}^{\infty}\left|\int_{x_{k}}^{2 x_{k}} f g\right|+\left|\int_{x_{n}}^{x} f g\right| \leqq \sum_{k=n}^{\infty} \epsilon x_{k}=2 \varepsilon x_{n}<2 \varepsilon x$.
This completes the proof.
5. Let $g \in D([0,1])$. Then
(1) $\quad \lim \sup _{x \rightarrow 0_{+}} g(x) \leqq$

$$
\leqq g(0)+\lim \sup _{n \rightarrow \infty} v\left(1,2^{-n}, 2^{-n+1}, g\right)
$$

Proof: Let $G^{\prime}=g$. For $n=1,2, \ldots$ set $x_{n}=2^{-n}$, $J_{n}=\left[x_{n}, 2 x_{n}\right], s_{n}=\sup g\left(J_{n}\right), \gamma_{n}=\left(G\left(2 x_{n}\right)-G\left(x_{n}\right)\right) / x_{n}$. For each n we have $\gamma_{n} \geqq \inf g\left(J_{n}\right)$, hence $s_{n} \leqq \gamma_{n}+v\left(1, J_{n}, g\right)$. Obviously $\lim \sup _{n \rightarrow \infty} s_{n}=$
$=\lim \sup _{x \rightarrow 0^{+}} g(x), \gamma_{n}+(0)$. This easily implies (I).
6. Notation. Let $J=[0,1], D=D(J)$. By $S D$ we denote the system of all functions $f \in D$ for which $\int_{J}|f|<\infty$. For each system Q of functions on J let $M(Q)$ be the system of all functions g on J such that fg $\in Q$ for each $f \in Q$. Let Z be the system of all functions g on J such that $f g \in D$ for each $f \in S D$. Let W be the class of all functions g on J such that

$$
\begin{gather*}
\lim \sup _{n \rightarrow \infty} v\left(2^{n}, x+2^{-n}, x+2^{-n+1}, g\right)<\infty \tag{2}\\
\text { for each } x \in[0,1)
\end{gather*}
$$

and

$$
\begin{gather*}
\lim \sup _{n \rightarrow \infty} v\left(2^{n}, x-2^{-n+1}, x-2^{n}, g\right)<\infty \tag{3}\\
\text { for each } x \in(0,1] .
\end{gather*}
$$

Remark. The inequality in (2) is fulfilled, if

$$
\lim \sup _{y \rightarrow x+}|(g(y)-g(x)) /(y-x)|<\infty .
$$

7. Let $g \in D \cap W$. Then g is bounded.
(This follows easily from 5.)
8. We have $Z=D \cap W=M(S D)$.

Proof: I. Let $g \in Z$. It is obvious that $g \in D$. Suppose that, e.g.. (2) fails for $\mathrm{x}=0$. Set $v_{n}=v\left(2^{n}, 2^{-n}, 2^{-n+1}, g\right)$. There are integers r_{k} such that
$1<r_{1}<r_{2}<\ldots$ and that $V_{r_{k}}>k^{2}$ for each k. Choose a k and set $m=2^{r_{k}}, a=1 / m$ 。

Since $v(m, a, 2 a, g)=V_{r_{k}}$, there is, by $\underline{2}$, a function h piecewise linear on J such that $h=0$ on $[0, a] \cup[2 a, 1], \int_{J}|h|=2 m, \int_{J} h=0, \int_{J} h g>k^{2}$ and that $\left|\int_{0}^{x} h\right| \leqq l(x \in J)$. It is easy to see that $\left|\int_{0}^{x} h\right| \leqq m x(x \in J)$. For each k construct such a and h and set $f_{k}=a h / k^{2}$. Further define $f=\sum_{k=1}^{\infty} f_{k}$. Obviously $\int_{J}|f|=\sum_{k=1}^{\infty} 2 / k^{2}<\infty$. If k, a and h are as above and if $x \in[a, 2 a]$, then $\left|\int_{0}^{x} f\right|=\left|\int_{0}^{x} f_{k}\right| \leqq x / k^{2}$ and $\int_{a}^{2 a} f g=\int_{a}^{2 a} f_{k} g>a$. We see that $f \in S D$ and that fig $\notin D$. This contradiction shows that $g \in W$. Hence $z \subset D \cap W$.
II. Let $g \in D \cap W$ and let $f \in S D$. By I, g is bounded. Set $f_{1}=f-f(0)$. It follows from $\underline{4}$ that $\frac{1}{x} \int_{0}^{x} f_{1} g \rightarrow 0$. Hence $\frac{1}{x} \int_{0}^{x} f g \rightarrow f(0) g(0)(x \rightarrow 0+)$. This shows that $f g \in D$. Obviously $\int_{J}|f g|<\infty$ whence $f g \in S D, g \in M(S D), D \cap W \subset M(S D)$.
III. It is easy to see that $M(S D) \subset Z$. This completes the proof.
9. Let $g \in M(S D)$. Then g is bounded and approximately continuous.

Proof: The boundedness of g follows from 8 and 7. We see, in particular, that $g \in S D$. Therefore $g^{2} \in D$. According to a well-known theorem (see, e.g.. [1], Theorem 3.3) g is approximately continuous.

Remark. R.J. Fleissner described in [2] the system $M(D)$. His characterization involves the notion of an improper Lebesgue-Stieltjes integral. It is, however, possible to characterize. $M(D)$ in the following way which is analogous to our description of $M(S D)$: A function $g \in D$ belongs to $M(D)$ if and only if

$$
\begin{gathered}
\lim \sup _{n \rightarrow \infty} \operatorname{var}\left(x+2^{-n}, x+2^{-n+1}, g\right)<\infty \\
\text { for each } x \in[0,1)
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{\sup _{n \rightarrow \infty}} \operatorname{var}\left(x-2^{-n+1}, x-2^{-n}, g\right)<\infty \\
\text { for each } x \in(0,1]
\end{gathered}
$$

(where var... has the usual meaning). This assertion will be proved elsewhere.

REFERENCES

[1] R.J. Fleissner, Multiplication and the fundamental theorem of calculus: A survey, Real Analysis Exchange, Vol. 2, No. 1 - 1976, 7-34.
[2] \qquad products of derivatives, Fund. Math. XCIV (1977), 1-11.

Received February 11, 1983

