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For anreal valued function f defired on = connecied

subset I of the real line R, the asusociated sets of I are

.

the sets EY ) = (z: Df(x)<n} and B (f)={x: £(x)>«} for

real =. In [3], f is Baire*.l or fef] if, for every

erfect set PC I, there is a portion of P on whicl: the
‘regtriction of f iz continucus. The purpose of this
is to 1nves izate associated setls of these functions., It.
is shown thai neither the class R ror the class of Darboux
Tunctions in @;; can be characterized in termsz of associated
sets., However, the family of these sctsz for each of these

two classés can

. s pX . '
et C, B and B, denote the classes of cortinuous,

'.l'\

- . X . . >
Taire 1 an? Baire” 1 functions on I rasrectively. Csaszér

znd Laczkovich proved thatb 63: is the classg of discrete

liaits of sequences in & ([1], Corollary 14 anl Theorem 13).
eyre oo ‘l: ~ f £4q el ) 1y - e g "w - A o~ o
for a class of Functionsz ', we uss £ ©) to dsnote the
family of asgociated sets of furcitions in F.

oy - - .~

i e - e 4 * v o E S o
Theorem 1. B € e2{®]) il and only ifl B¢ 7 .nG
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Proof. Let E be.an arbitrary set in @ NG3g . Dy Lemma 6

. . . . T s s
in [1], the characteristic function of 5 is in ¢, and heace

£(®]). On the other hani, let f¢ #] and v¢ R be given.

From the proof of Lemma 4.1 in [2], we see that thers exist

closed sets A; and g; €C (i=1,2, ««+) such that IT= \J{ A

i=1,2, ++-} end £l4;=g;l14; for each i. It follows that

{x:f(x)z«} and {x: f(x) ==} are in F_. Clearly Z°(f) and
s e, N 3 - K b -n'-“ = 3o \ v 3 2 1

2,(f) ure in G, . Also, B°(f) and B _(f) are in F, since

fe c ? . “The theorem is proved.

If a class of functions F can be charac’cerized in terms
.of associated sets, that is, if there is a family of éets S
such that "f € ¥ if and . only if E"(f) and E _(f) are in & fof
¢ ¢ R" holds, then we must have E(F e 8.

v is well known that there exisis a monotone increasing

Tunchtion g which is not continucus atl every rational point.

Lled.rl:y, foI‘ avery v €. R “a{ ) and B ( ) are l"’l :."C f\Gé or

‘

é,(-ﬁ’i) but g¢ A7 . Thus B cammot be characterized in

terms of associated sets.

How Tct ® denote the class of Darboux functions on I.

H@\, and HH ] are short notations for Y @ and §n o]
respectively.

- ~ . X AP . ‘ ~ . ‘
Lemsa. Let £ «H», , *¢ R and E be either T (f)" or

2 _(f£). ihen BeF_nG, and satisfies
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(*) Por xeE and §>0 with x-%e¢I (x+ 8¢I), the set
fx-6,x%xINnE ([x,x+82nE) contzains an interval.

P2y -

roof. Tet £ and © be as stated in the mn othesis. e

"

Pix R, € & and 8 >0 such that x_-fel (XO+ 5¢I). Let J be

the interval [x -6, x +58]). Then £iJ i a

. 1 ([x, , ®

o) o}
Baire* 1 function.and, by Theorem 2 in. 31, thers exizts
X €JNE such that £ is con®inuous at x. Clearly JNE -

contains zn irnterval. By neoren 1, the prool is coonleted.
Definition. A set of re=al numbers e S, if T e? NG
and satisfies ths conditicu (*) stated above.

Theorem 2. Ee¢ £(LHT) il and only if T e Si,.

Troof. fThe sufficiency Tollows from the Lemmna. To
prove thes necesaity, let E ¢ S, be given. Case E=f is

trivial. e aszums that E£ J and let E_", £ and pE derote

the interior, the closure and the boundary of T respectively.

The condition (#) implies that EC4 @ 2nd RcE®, the closure

of B'. E” is the union of at most countably many disjoint

. ) -
open intervals, say £ = Uf(a,, b ). ILet c = ;(a, ¢ B )y
V= -n(x). be the line joininz the points (avl , 0) ani (cn , 1),

and {'im{: k=1,2,-"+¢} b2 & stricily decreasir; sequence in

the interval (a ., c_ ) convsrzing to 5. . Je define [ as

follows:

by
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if x=¢ or x_, for aven X,

n YLt

=L _(x) 4if X=X .

linear on [x IS and on [x X
v "nl’,n]“ ““n k+1?

By reflecting the ysraph of L on (a

we have f clefizled on (a

each n, T ig defined and continuous or. 2° . Jor x¢ Eo, let
f(x) =0 ifT x ¢ B,

1 if }:eE-EO.

il
)

Thus f is defined on R.
Let P be a given perfect set. If PNEY£LF or

Pn(R-E)#d, then there is certainly a wortion of P on

which the restriction of f is continuwous. If PNE” and

Fn(R-E) are voth @, then Pc gE. Xow PNE and P-E are

both in G, and herce can nelt e both denss in P. In case

PAE is not dense in P, thers is an interval J 7 with

P/\JJ £Z@ and P?\E"\J1 =@, It follows that If|P» Jd, is

conztantly O. In case -3 is n dense in P, there is an

0]

ox "
intervel J, with PnJy# ¥ and (P-E)" dy=@. Then
PNJ,c PRECpENECE-3%, and f|2nJ, is constantly 1.
Therefore f € (B;_ . TFrom a theorem of Young [4], we have

Ted. Since T={x:f(x)>0}, the theorsm is provad.



e will present a function £ on R suchi that, for every

xeir, 3%fF) ana 2 (f) are in 3, bub fé‘;ﬁ Dy

1=

M

following Theorem 1, we conclude that &£8O; csnnot he
caaracterized in terms ol associated sets.

Let {(a/ b } n=1,2, --+} be the coriigucus intsrvals

of the Cantor set ¥ in [0, 1]. e (leflne £ oon exch (=, L)
1

the sarie manrer as in the »Hroof of Theorem 2, and

[N
=

£(x)

H

O i #=20 or =21,

——>
[N
()
l;\-I
n

=
>
~
O
|... 4

N—r

e

sup { b b <X

Let E be either ®%(f) or %, (f). Foting trat £|({0, 1)-E)

ig comtinuous and F£{((0, 1)NEK) is non-der‘rna,s:mu we have
both EN((C, 1) -K) and En((o y L)NE) in F_i Gg . Also,

R~(D, 1) is either ¢ conteined in or u.lo,]Ol"lC from =. iHence
Te€r NG, . idoreover, K is nowiere dense znd IfI(R-E) is
continuous. e see that ths condi ion (*) is fufilled. Trat

is, T € 3, . Zowever, [lX is éiscontinuou:—s 2T every br and
- .‘<

fanY

br tn=1,2, -} iz densz ir I". Thore is no poriion of K on
L

« ‘. . . . o o - S #*
which the restriction of I is continuous. Hence ¢ £H7T .
L

Zahorski 5] defined = nesied sequence of clazses of
funciions i (i =0, 1, ¢+, 5) and groved that =0y =

p .. . - : * e A . s N )
YP-.. e now check if £H 1 Tits somewhere in this sequence.
.

o 5 . 3 % -y . . ~ . . . .
Thecren 3. (i) &£H - mz . {ii) Thers iz no inclusion
4



relation between &HB and .y for i=3, 4, 5.
Proecf. (i) follows immediately from Lemma and -the
above example. “#or (ii), since ’>’r'=f33"ﬂ'l4 :zms , it suffices
l-r
to show that there exist o s’ms— 5}:?35_ and Y € “Jbi - 77’53 .
Let Ge G5 contain 311 rational numbers and nave
Lebesgue measure zero. By Leams 11 in [5], there oxists

3. A moment's

1}

®w:R—>[0, 1] in »1_ such that {x:¢(x)=0)
e
reflection shows that wmg "33; .

Kow we define ¥ as follows:

1
¥ (x) = if x50,
. I .
= 0 if x= Or K= —- ,n=1,2, ¢se,
on
: 1/ 1 1
= 1 if 1(:-—2-‘;?25 +-m P l’l::l, 2, see,
& <
=-1 if Y =0,1,2
= - 1 ‘{"—2—.22n+-1+92n 2 BEU, gy 0,
" 1/ 1 1"
and let ¥ be lincar on intervals ;;f;'iili » 5 =ar t .;__

-

! 1 L 1 7
and T2 20,

l‘21’1.'*']_ + '2‘1‘,‘:’ [} 21 P) 1= 0, 1, 2, e, blearly |ly € ‘%

. o .
and ¥ is continuous on R- {0}. It follows that ¥ ¢ c?jafjl .

Let B= {x: 9(x) >0}, X, =C and c>1. For ¢3>0, there exists

n suoh that 1/2°% ¢ ¢. Iet h=h, = 1/2%%% | myen nn
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h/hl <c¢ and h+h,< e, 3ince {XOi'h, X 4uhi-h1)f\E==¢,

v ¢ M, . The theorem is »roved.
J
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