Real Analysis Exchange Vol. 8 (1982-83)
if. 7. Pu, Departaent of Matematics, Mexas Anf University, College Station, Texas 77843 and ?. Pu, Z. O. Eox 1395, Coliege Station, Teras 77041

Associated Sets of Baire* I Ihunctions

For areal valued function f defired on a connected subset I of the real line R, he aswociated sets of in are the sets $E^{(x}(f)=\{x: f(x)<x\}$ and $E_{i x}(f)=\{x: f(x)>$ ix for real x. In [3], is Daire* 1 or $f \in \theta_{i}^{*}$ if, for every perfect set $P C I$, there is a portion of forimicl the restriction of f is continuous. whe purpose of this paper is to investisate associated seta of these functions. It is shown that neither the class B Bor the cless of Brboux * functionis in $\hat{3}_{1}^{*}$ can be characterized in terne of associated aet: However, the family of these sets for each of these two classes can be chamaterized.

Iet \because, B_{1} and $\mathbb{B}_{工}^{*}$ denote the classes of continuous, Eaire 1 and Baire* 1 furnctions on I respectively. Csascár and Laczlovich proved that B_{I}^{*} is the class of discrete limits of sequences in C([I], Corollary l4 and Theorem Iラ). Fow a class of functions F, we use $E(F)$ to denote the femily of associated sets of functions in F.

 in [1], the characteristic function of 3 is in 33_{7}^{*} and hence $E \in E\left(G_{i}^{*}\right)$. On the other hand, let $f \in \beta_{1}^{*}$ and $\alpha \leq R$ be given. From the prooi of Lemma 4.1 in [2], we see that there exist ciosed sets A_{i} and $s_{i} \in \mathcal{C}(i=1,2, \cdots) \operatorname{such}$ that $I=U\left\{A_{i}:\right.$ $i=1,2, \cdots\}$ and $i!A_{i}=\varepsilon_{j} \mid A_{i}$ for each i. It follows that $\{x: f(x) \geqq \alpha\}$ and $\{x: f(x) \leq \dot{x}\}$ are in $F_{\sigma}, C l e a r l y Z^{\prime \prime}(f)$ and $\mathbb{S}_{\alpha}(f)$ are in G_{S}. Also, $E^{\dot{x}}(f)$ and $\sum_{\mu}(f)$ are in F_{σ} since If $\Re_{1}^{*} \subset \theta_{1}$. The theorem is proved.

If a class of functions \mathcal{F} can be characterized in terms of associater sets, that is, if there is a family of sets S
 of $\mathrm{R}^{\prime \prime}$ holin, then we must have $\varepsilon(\mathcal{F}) \ddot{S}$.

It is well know that there exista a monotone increasing runction fonch is not continuous at every rational point.

 terma of associated sets.

Forv let $\$$ denote the class of Darboux functions on I.
 respectively.
 $z_{x}(f)$. When $E \in F_{\sigma} \cap G_{\delta}$ ard satisfies
(*)
For $x \in E$ and $\delta>0$ aith $x-\delta \in I(x ; \delta \in I)$, the set
$[x-\delta, x] \cap E([x, x+\delta j \cap E)$ contains an interval.
 fix $x_{0} \in \mathbb{E}$ and $\delta>0$ such trat $x_{0}-\delta \in I\left(x_{0}+\delta \in I\right)$. Let d be the interval $\left[x_{0}-\delta, x_{0}\right]\left(\left[x_{0}, x_{0}+\delta\right]\right)$. Lhen fiJ is a Baire* ? function and: by Theorem 2 in. [3], there exists $x \in J \cap E$ such that r is contiruoixis at x. Cilearly $J \cap E$ contains an interval. By Theoren l, tha moos is congeted.

Definition. A set of real numbers $E \in S C_{2}$ if $\mathcal{X} \in \mathcal{F}_{\sigma} \cap G_{s}$ and satisfies tine concitiou (*) stated above.

Theorem 2. $E \in \varepsilon\left(x B_{1}^{*}\right)$ if and only if $\mathbb{E} \in \operatorname{Sin}_{2}$.

Eroof. We suficiency follom from the Lema. To prove the necesisity, let $E \in \mathbb{F}_{2}$ be given. Case $E=\phi$ is trivial. ie assume that $\mathbb{A} \neq \emptyset$ anc let $\underline{a}^{\mathrm{C}}$, $\overline{\mathrm{E}}$ are β denote the interiox, the closure and the boundiry of frespectively. Whe condition (*) innlies that $E^{\circ} \neq \varnothing$ and $E \subset \overline{E^{0}}$, the closure of E°. E^{0} is the union of at mosi countobly many disjoint open intervals, say $E^{0}=U\left(a_{r_{i}}, b_{r_{1}}\right)$. Let $c_{n}=\left(a_{n}+b_{n}\right)$, $y=I_{n}(x)$ be the line joinine tile points $\left(a_{r i}, 0\right)$ and $\left(c_{n}, I\right)$, and $\left\{r_{n k}: k=l, 2, \cdots\right\}$ be $\#$ striculy decreisirk sequence in the interval $\left(a_{1 i}, c_{n}\right)$ converoine to a_{n}. $T \in$ define f as follows:

$$
\begin{aligned}
f(x) & =I \quad \text { if } x=c_{n} \text { or } x_{n d} \text { for even } x, \\
& =I_{n}(x) \quad \text { if } x=x_{n]} \text { for odd } x, \\
& \text { Iinear on }\left[x_{n 1}, c_{n}\right] \text { and on }\left[x_{n} k+1, x_{n k}\right] \text { for each } k .
\end{aligned}
$$

By reflectine the iraph of if or $\left(a_{n}, c_{n}\right]$ Ebout the line $x=c_{n}$, we have f defined on $\left(a_{n}, b_{n}\right)$. As this is done for each n, \hat{i} is defined and continuous or \mathbb{T}°. For $x \notin E^{\circ}$, let

$$
\begin{aligned}
f(x) & =0 \quad \text { if } \quad x \notin E \\
& =1 \text { if } \quad x \in E-E^{0} .
\end{aligned}
$$

Thus f is definer on R.
Let P be a given perfect set. If $P \cap \Phi^{0} \neq \varnothing$ or $P \cap(\mathrm{~K}-\overline{\mathrm{E}}) \neq \varnothing$, then there is certainly a portion of P on which the restriction of f is contiruous. If $P \cap E^{\circ}$ and
 both in G_{8} and herce can not be both dense in P. Ir: case PAP is not dense in P, there is an interval j_{1}, with בハJ $J_{1} \neq \varnothing$ and $\mathrm{P} \cap \mathrm{E} \mathrm{AJ}_{1}=\varnothing$. It follows that flPn J_{1} is constanty 0 . In case $P-P$ is rot dense in P, there is an interval J_{2} with $P \cap J_{2} \neq \varnothing$ and $(P-E) \subseteq J_{2}=\emptyset$. Then
 Therefore $\mathcal{I} \in B_{\mathcal{Z}}^{*}$. From a theorem $0:$ Youns [4], we have $i \in \mathbb{X}$. Since $\mathcal{Z}=\{x: f(x)>0\}$, the theorem is proved.

Te mill bresent a function fon in such that, for every
 Following meorem 1 , we conclude biet $0 B \%$ cennot he caerecterized in terms of associated sets.

Let $\left\{\left(a_{n}, b_{n}\right): n_{1}=1,2, \cdots\right\}$ be the coritisucus intervals
 in the sane marres as in the goof of meoren 2 , and

$$
\begin{aligned}
f(x) & =0 \quad \text { if } x \leq 0 \quad \text { or } \quad x \geqq I, \\
& =\sup \quad\left\{b_{n}: b_{x_{i}}<x\right\} \quad \text { if } \quad x \in X \cap(0, I) .
\end{aligned}
$$

Iret E be either $E^{\alpha}(f)$ or $F_{\alpha}(f)$. Fotiner trati f(io, I)-F) is continuous and $f \mid((0, I) \cap K)$ is non-decreasine, we have
 $R-(0, I)$ is either conteined in or disjoint from E. Hence
 contimuous. \#e see that the condition (*) is fufilled. That

 which the restriction of is cortinuous. Hence $f \notin A \beta_{l}^{*}$.

Zahorski [5] desineả a nested sequence of classes of functions $m_{i}(i=0, l, \cdots, 5)$ ana roved that $m_{0}=m_{j}=$ \mathbb{B}_{1}. de now check if $\mathscr{E} \mathcal{B}_{1}^{*}$ ints somewhere in this sequence. Theoren 3. (i) $\widehat{B} \mathcal{B}_{1}^{*} \varsubsetneqq m_{2}$. (ii) There is no inclusion
relation between $5 \sin _{1}^{*}$ and mt_{i} for $i=3,4,5$.
Proof. (i) follows immediately from Lema and the above exanple. Tor (ii), since $r r_{3} \supset r \mu_{4} \supset m_{5}$, it suffices to show that there exist $\varphi \leqslant m Y_{5}-5 \Omega_{1}^{*}$ and $\psi \in()_{1}^{*}-n r_{3}$.

Let $G \in G_{8}$ contain all rational numbers and have Lebesciue measure zero. By Lemma 11 in [5], there oxists
 reflection shows thati $\% B_{j}^{*}$.

Now we dePine ψ as follows:

$$
\begin{aligned}
\dot{W}(x) & =\frac{1}{2} \quad \text { if } x \leq 0, \\
& =0 \quad \text { if } x \geq 1 \quad \text { or } x=\frac{1}{2^{n}}, n=1,2, \cdots, \\
& =1 \quad \text { if } x=\frac{1}{2} \cdot \frac{1}{2^{2 n}}+\frac{1}{2^{2 n-1}}, n=1,2, \cdots, \\
& =-1 \quad \text { if } x=\frac{1}{2} \cdot \frac{1}{2^{2 n+1}}+\frac{1}{2^{2 n}} \quad, n=0,1,2, \cdots,
\end{aligned}
$$

and let ψ be lincar on intervals $\frac{-1}{2^{n+1}}, \frac{1}{2}!\frac{1}{2^{n+1}}+\frac{1}{2^{n}}-$ and $\left[\frac{1}{2}\left(\frac{1}{2^{n+1}}+\frac{1}{2^{n}}, \frac{1}{2^{n}}, \quad n=0,1,2, \cdots\right.\right.$, Clearly $\psi \in \mathscr{y}$
 Let $\mathcal{H}=\{x: \psi(x)>0\}, x_{0}=0$ and $c>1$. For $\varepsilon>0$, there exists n sucin that $1 / 2^{2 n}<\varepsilon$. Iet $h=h_{1}=I / 2^{2 n+1}$. Mnen $h h_{1}>0$,
$h_{1} / h_{I}<c$ anc $h \div h_{I}<\varepsilon$. since $\left[x_{0}+i n, x_{0}+h \div h_{I}\right]$ in $E \varnothing$, $\therefore \notin \mathrm{ml}_{3}$. Whe theorem is proved.

ROFPREACES

[1] A. Csaszáa and H. Iaczkovich, Discrete and equal converSence, Studia Sci. Eath. Fung. Io (1975), 463-472.
[2] \qquad , Some remarks on aiscrete Baire classes, Acta vitht. Acad. Sci. Func. 33 (1979), 51-70.
[3] R. d. OVhalley, Daire* I, Darbour functions, Proc. Aner. Fifith. Soc., 60 (1976), 137-192.
[4] J. Young, A theorer in the theory of functions of a real variable, Rend. Circ. Iat. Palermo, 24 (1907), 137-192.
[5] 7. Zahorsini, Sur la première dérivée, Irans. Amer. Math. Soc., 59 (1950), 1-54.

