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 Associated Seta of Baire* 1 Amotions

 Por a. real valued function f defined on a connected

 subset I of the real line Ii, the associated sets of f are

 the sets E^(f) = [x : f(x)<*} and E.x(f ) = {x : f(x)>^} for

 real # . In [3], f is Baire'* 1 or f * ¿3*. if, for every

 perfect set Pel, there is a portion of ? on v/hiel; the

 -restriction of f is continuous. The purpose of this paper

 is to investigate associated sets of these fune ti ona . It .

 is shown that neither the class {&* j' or the class of Darboux

 functions in can. be . characterized in terms of associated

 sets. However, the family of these sets for each of these

 two classes can be characterized.

 Is b Ô, and S * denote the classes of continuous,

 Baire 1 and Baire* 1 functions on I respectively. Csassar

 and Lac zkovich proved that (B ^ its the class of diabrete

 limita of sequencer in C-([l], .Corollary 14 ■ and Theorem 15) .

 ?ox- a class of functions T , '«ve use £(?) to denote the

 family of associated sets of furetions in T.

 Theorem 1. E £ ** ) if and only if St ? AG. ,
 ** O O
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 Proof. Let 3 be an arbitrary set i» ' ?a A Gg • By 'L e/ma 6
 ■łf

 in [1], the ■ characteristic function of E is in <&-, and hence
 *X"

 S t On the other hanā, let f <= a-irá "í ä be given-.

 From the proof of Lemma 4.1 in [2], we see that thers exist

 closed sets and g^éC (i= X, 2, *••) such that 1= 'J { :

 i=l, 2, •••} and f Í A^ for each i. It follows that

 [z ę. £(x)¡?a) and {x : f (x) * *} are in F^ . Clearly 3*(f) and

 "^(f) are in Gs . Also, 3,J<(f) and 3w(f) are in F^ since

 f fe <&* c ¡6^ . The theorem is proved.

 If a class of functions T can be characterized in terms

 of associated sets, that is, if there is a family of sets S

 such that "f í y if and-, only if f ) and 2^(f) are in ¿ for
 * <• -S" holds/ then we must have £'(T ) t' S.

 It is well known that there exists a monotone increasing

 function & which is not continuous at every rational point.

 Clearly, for every c- R, 2*(g) and 3x(g) are in o Gg or

 £(ßj.) but . Thus • 6* -cannot be characterized in
 terms of associated sets.

 Row let JÔ denote the class of Darboux functions on I.

 and ¿6 ^ are short notations for â) r' ^ and S)

 respectively.

 Lemma. Let f R and S be either E'v(f)' or

 3 (f). ïhen 'S fe F G. and satisfies W CT O
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 (*) For xřE and 6 > 0 .vi th x - * <- I ( x 6 t I ) , the set

 [x- ò , x] r' E ( [ X , X + 6 j n E ) contains an interval.

 Proof. Let f and E be as stated in the hypothesis . ,7 e

 fix X é S and ô ■;> 0 such that x - 6 t I (x + 5 (• I). Let J "be
 o o o

 the interval [x - 6 , x 1 ([x , x +5]). Then f i J is a
 O O- O o

 Baire* 1 function • and , by Theorem 2 in. [3]» thers exista

 xí JaS such that f is continuous at x. Clearly 'J a E

 contains an interval. Ey Theorem 1, the proof is completed.

 Definition. A set of real numbers Et S-.L-, if E & E AG,
 co

 and satisfies the condition (*) stated above.

 Theorem 2. E e £($#*) if and only if E é SM9 .
 _A_ 1 -

 Proof. The sufficiency follows from the Lemma. To

 prove the necessity, let E ć be given. Case E= 0 is

 trivial, we assume that E/0 and let Sc , E . and pE denote
 the interior, the closure and the boundary of F< respectively.

 The condition (*) implies that E° 4 0 arid EcE°, the closure

 of E°. E° is the union of at raost countably ¿íany disjoint

 open intervals, say S° = Vj(a„. , b ). Let c = j¿( a_ + b ),
 ¿i ri ri ri il

 Y- 1- (x) be the- line joining the points (a„. , 0) and (c„ ,1), ii a i ri

 and [ï : k-1, 2, be a strictly decreasing sequence in

 the interval (a. . ' c„) converging ^ to . 7 e define f as li ' .il ^ 11

 follows:
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 f(x) = 1 if X « e or X for even Ic,

 = L^Cx) if x-x.^ for odd r.,

 linear on [:<:nl , cn3 arid on [xQ Jc+1 , xnV] for each k.

 By reflecting the graph of f on (ar , o ] about tlie line

 X = cn , we have f defined on (.a , b ). As this is done for

 each, n, f is defined and continuous or; E° . ior E° , let

 f(x) = 0 if X ¿ 2,

 = 1 if X € E - E° .

 íhu s f is defined on R.

 let P be a given perfect set. If. P A / 0 or

 ? n(R-E)/0, then there is certainly a portion of P on

 which the restriction of f is continuous. If ?nS° and

 P n(-R-E) are "both 0, then Pc pE. Kov/ Pr>. E and P - E are

 "both in and hence can not* "be both dense in P. In case

 PAS is not dense in P, there is an interval with

 ? /v J-j 0 and P a E '"v J-ļ = 0. It follows that f |Pi's J-, is

 constantly 0. In case P - S is not dense in P, there is an

 interval J 2 with PA Jg^'0 and (P-E).'x Jg = 0. Then

 F ñ J 2 c ? a E c pE f* 2 c E - E° , and fļPAJg is constantly 1.

 Therefore f € <6^ . Prora a theorem of Young [4], we have

 f c S,. Since 3= {x : f(x)>0}, the theorem is proved.
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 Ile will present a function f on. H sudi that . for every

 at é ti, 3*(:f ) and 3^(f ) aro in oMg Lut f 4 ^ . 3 y . he remark
 V.

 following Theorem 1, we conclude that <S Ö ļ cannot he

 characterised in terras of associated sets.

 Let [ (a„ , b ) : n = 1 , 2, •••} be the conti.^ous intervals j. I I !

 of the Cantor set E in [0 , Ij . :/e define f on s ach ( a , u )

 in the sane inanner as in the proof of ïheore/a 2, -md

 f ( x ) = 0 if 5 0 or x? ],

 = sup { b : b < x} if x e E A ( 0 , 1 ) . n xi

 Let E be either 3u(f) or 3Ä(f). E o ting that f ( ( (0 , 1)-1C)

 is continuous and f '( (0. , 1) A Ii) is non-decreasing, we have

 bo ti.) 3 A ( ( 0 , 1 ) - K ) and- 3 A ( ( 0 , 1 ) A E ) in ?ff a . Also ,

 R- (0, 1) is either contained in or disjoint froia 3. Hence

 3 e F a G K . Moreover , E ia nowhere dense and f|(-l-E) is O K v

 continuous, ¿'e see that the condition (*) is fufilled. That

 is, 3 c- 3K9 . ZI o>/ e ver, fļli is' discontinuous at every b and

 [b : n- 1, 2, •••} is dense in I". DI': ore is no portion of K on

 which the restriction of f is continuous. Hence f & $$ * .
 -L

 Zahorski [5] defined a nested sequence of classes of

 functions YfX^ (i = 0, 1, 5) and proved that m = yri-j =

 JÔ#-! . ./e nov/ check if Sióò^ fits somewhere in this sequence.

 Theorem 3. (i) <6 -ft * . (ii) There io no inclusion
 .JL cL
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 relation between »010* and for 1=3, 4, 5.

 Proof, (i) follows immediately from Lemma and the

 above example. ' '?or (ii), since "VT. ~d :> ir*,. , it suffices

 to show that there exist cp and ty ť $<Ö* ~ ^3 •

 Let G € Gg contain all rational numbers and have
 Lebesgue measure zero. By Leramą U in [5], there exists

 cp : R - > [0 -, 1] in such that (x : cc(x) = 0} = G. A mordent's
 0

 reflection shows that .

 I'ow we define '¡i as follows:

 'jf(x) = j if xr?.0,

 = 0 if X 5 1 or X := ~ , n =- 1 , 2 , • • • ,
 2

 = 1- if X- = ļ : + ^2n-I * 11 = lf 2' ' * ' »
 i.. ^

 = -1 x = 2" "^2ñTÍ + "7¡2ñ ' n ~ 2> ' ' * >

 *" 1 1/1 ' 1 1 and let be linear on intervals ---;■=,• , -77 ' ~~~n + - cr
 pXi-}-j_ ¿ pil-» _L Q.n

 •and r-| f 2 + ~~ 2 , - 2 n= 0, 1, 2, • • • . Clearly * if & i. i 2 2 2

 and iļf is continuous on R- [0}. It follows tnat $ fc A) & .

 Let 3=- {x : ♦ (*) > 0} , x = 0 and ol. For e >0, there exists

 11 such that 1/2 1-11 < e . Let h=hļ - 1/2 n_t ^ . Then h h-^ > 0 ,
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 ii/hļ < c and h-:- li-, < e . Since [xQ + li, xQ -¡ h-ř h^] r> E = 0 ,

 (' 4 Wo • 21ie theorem is proved..
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