Real Analysis Exchange Vol. 8 (1982-83)

H. N. Pu, Department of Mathematics, Texas A&M University, College Station, Texas 77843 and H. H. Pu, P. C. Box 1395, College Station, Texas 77841

Associated Sets of Baire* 1 Functions

For a real valued function f defined on a connected subset I of the real line R, the associated sets of f are the sets $E^{\alpha}(f) = \{x : f(x) < \alpha\}$ and $E_{\alpha}(f) = \{x : f(x) > \alpha\}$ for real α . In [3], f is Daire* 1 or $f \in \mathcal{B}_{1}^{*}$ if, for every perfect set P<I, there is a portion of P on which the restriction of f is continuous. The purpose of this paper is to investigate associated sets of these functions. It is shown that neither the class \mathcal{B}_{1}^{*} for the class of Darboux functions in \mathcal{B}_{1}^{*} can be characterized in terms of associated sets. However, the family of these sets for each of these two classes can be characterized.

Let \mathcal{C} , \mathcal{B}_1 and \mathcal{B}_1^* denote the classes of continuous, Eaire 1 and Eaire^{*} 1 functions on I respectively. Csaszár and Laczkovich proved that \mathcal{B}_1^* is the class of discrete limits of sequences in \mathcal{C} ([1], Corollary 14 and Theorem 15). For a class of functions \mathfrak{F} , we use $\mathcal{E}(\mathfrak{F})$ to denote the family of associated sets of functions in \mathfrak{F} .

Theorem 1. $E \in \mathcal{E}(\mathcal{B}_1^*)$ if and only if $E \in \mathbb{F}_{\sigma} \cap G_{\delta}$.

479

Proof. Let E be an arbitrary set in $\mathbb{P}_{\sigma} \cap \mathbb{G}_{\delta}$. By Lemma 6 in [1], the characteristic function of E is in \mathfrak{G}_{1}^{*} and hence $\mathbb{E} \in \mathfrak{E}(\mathfrak{G}_{1}^{*})$. On the other hand, let $f \in \mathfrak{G}_{1}^{*}$ and $\forall \in \mathbb{R}$ be given. From the proof of Lemma 4.1 in [2], we see that there exist closed sets A_{i} and $\mathfrak{S}_{i} \in \mathcal{C}$ ($i = 1, 2, \cdots$) such that $\mathbb{I} = \bigcup \{A_{i} :$ $i = 1, 2, \cdots\}$ and $f : A_{i} = \mathfrak{S}_{i} : A_{i}$ for each i. It follows that $\{x : f(x) \ge \alpha\}$ and $\{x : f(x) \le \alpha\}$ are in \mathbb{F}_{σ} . Clearly $\mathbb{P}^{\circ}(f)$ and $\mathbb{E}_{\alpha}(f)$ are in \mathbb{G}_{δ} . Also, $\mathbb{P}^{\circ}(f)$ and $\mathbb{E}_{\alpha}(f)$ are in \mathbb{F}_{σ} since $f \in \mathfrak{C}_{1}^{*} \subset \mathfrak{C}_{1}$. The theorem is proved.

If a class of functions \mathcal{F} can be characterized in terms of associated sets, that is, if there is a family of sets \mathcal{S} such that "fff if and only if $\mathbb{E}^{2}(f)$ and $\mathbb{E}_{\mu}(f)$ are in \mathcal{S} for $\mathscr{E}^{\mathbb{R}}$ holds, then we must have $\mathcal{E}(\mathcal{F}) \subset \mathbb{S}$.

It is well known that there exists a monotone increasing function g which is not continuous at every rational point. Clearly, for every $e \in \mathbb{R}$, $\mathbb{E}^{e}(g)$ and $\mathbb{E}_{e}(g)$ are in $\mathbb{P}_{c} \cap \mathbb{G}_{\delta}$ or $\mathscr{E}(\mathfrak{L}_{1}^{*})$ but $g \notin \mathfrak{R}_{1}^{*}$. Thus \mathfrak{R}_{1}^{*} cannot be characterized in terms of associated sets.

Now let \mathfrak{D} denote the class of Darboux functions on I. \mathfrak{DB}_1 and \mathfrak{DB}_1^* are short notations for $\mathfrak{D} \cap \mathfrak{B}_1$ and $\mathfrak{D} \cap \mathfrak{B}_1^*$ respectively.

Lemma. Let $f \in \mathfrak{BB}_1^*$, $\alpha \in \mathbb{R}$ and \mathbb{E} be either $\mathbb{E}^{\mathbb{V}}(f)^{\mathbb{V}}$ or $\mathbb{E}_{\mathbb{V}}(f)$. Then $\mathbb{E} \in \mathbb{F}_{\sigma} \cap \mathbb{G}_{\delta}$ and satisfies

(*) For x ∈ E and δ>0 with x-δ∈ I (x + δ∈ I), the set [x-δ, x] ∩ E ([x, x+δ] ∩ E) contains an interval. Froof. Let f and E be as stated in the hypothesis. #e fix x₀ ∈ E and δ>0 such that x₀ - δ∈ I (x₀ + δ∈ I). Let J be the interval [x₀ - δ, x₀] ([x₀, x₀ + δ]). Then f|J is a Baire* 1 function and, by Theorem 2 in [3], there exists x ∈ J ∩ E such that f is continuous at x. Clearly J ∩ E contains an interval. By Theorem 1, the proof is completed.

Definition. A set of real numbers $E \in SM_2$ if $E \in \mathbb{F}_{\sigma} \cap \mathbb{G}_5$ and satisfies the condition (*) stated above.

Theorem 2. $\mathbf{E} \in \mathcal{E}(\mathcal{B}\mathcal{B}_1^*)$ if and only if $\mathbf{E} \in SM_2$.

Proof. The sufficiency follows from the Lemma. To prove the necessity, let $E \in SM_2$ be given. Case $E = \emptyset$ is trivial. We assume that $E \neq \emptyset$ and let E^C , \overline{E} and βE denote the interior, the closure and the boundary of E respectively. The condition (*) implies that $E^0 \neq \emptyset$ and $E \in \overline{E^0}$, the closure of E^0 . E^0 is the union of at most countably many disjoint open intervals, say $E^0 = \bigcup (a_n, b_n)$. Let $c_n = \frac{1}{2}(a_n + b_n)$, $y = L_n(x)$ be the line joining the points $(a_n, 0)$ and $(c_n, 1)$, and $\{\pi_{nk}: k = 1, 2, \dots\}$ be a strictly decreasing sequence in the interval (a_n, c_n) converging to a_n . We define f as follows:

481

$$\begin{split} f(x) &= 1 & \text{if } x = c_n \text{ or } x_{nk} \text{ for even } k, \\ &= L_n(x) \text{ if } x = x_{nk} \text{ for odd } k, \\ &\text{ linear on } [x_{nl}, c_n] \text{ and on } [x_{n k+l}, x_{nk}] \text{ for each } k. \end{split}$$

By reflecting the graph of f on $(a_n, c_n]$ about the line $x = c_n$, we have f defined on (a_n, b_n) . As this is done for each n, f is defined and continuous on E^0 . For $x \notin E^0$, let

$$f(x) = 0 \quad \text{if} \quad x \notin E,$$
$$= 1 \quad \text{if} \quad x \in E - E^{0}.$$

Thus f is defined on R.

Let P be a given perfect set. If $P \cap E^{\circ} \neq \emptyset$ or $P \cap (R - \overline{E}) \neq \emptyset$, then there is certainly a portion of P on which the restriction of f is continuous. If $P \cap E^{\circ}$ and $P \cap (R - \overline{E})$ are both \emptyset , then $P \subset \beta E$. Now $P \cap E$ and P - E are both in G_{δ} and hence can not be both dense in P. In case $P \cap E$ is not dense in P, there is an interval J_1 with $P \cap J_1 \neq \emptyset$ and $P \cap E \cap J_1 = \emptyset$. It follows that $f | P \cap J_1$ is constantly O. In case P - E is not dense in P, there is an interval J_2 with $P \cap J_2 \neq \emptyset$ and $(P - E) \cap J_2 = \emptyset$. Then $P \cap J_2 \subset P \cap E \subset \rho E \cap E \subset E = E^{\circ}$, and $f | P \cap J_2$ is constantly 1. Therefore $f \in \mathfrak{G}_1^*$. From a theorem of Young [4], we have $f \in \mathfrak{D}$. Since $E = \{x : f(x) > 0\}$, the theorem is proved. We will present a function f on R such that, for every $a \in R$, $\mathbb{B}^{*}(f)$ and $\mathbb{E}_{a}(f)$ are in \mathbb{SM}_{2} but $f \notin \mathfrak{SB}_{1}^{*}$. By the remark following Theorem 1, we conclude that \mathfrak{SB}_{1}^{*} cannot be characterized in terms of associated sets.

Let $\{(a_n, b_n) : n = 1, 2, \dots\}$ be the contiguous intervals of the Cantor set H in [0, 1]. We define f on each (a_n, b_n) in the same manner as in the proof of Theorem 2, and

$$f(x) = 0$$
 if $x \le 0$ or $x \ge 1$,
= $\sup \{b_n : b_n < x\}$ if $x \in K \cap (0, 1)$.

Let E be either $\mathbb{E}^{\mathbf{x}}(\mathbf{f})$ or $\mathbb{E}_{\mathbf{x}}(\mathbf{f})$. Foting that $f|((0, 1) - \mathbf{K})$ is continuous and $f|((0, 1) \cap \mathbf{K})$ is non-decreasing, we have both $\mathbb{E} \cap ((0, 1) - \mathbf{K})$ and $\mathbb{E} \cap ((0, 1) \cap \mathbf{K})$ in $\mathbb{F}_{\mathbf{G}} \cap \mathbb{G}_{\delta}$. Also, $\mathbb{R} - (0, 1)$ is either contained in or disjoint from \mathbb{E} . Hence $\mathbb{E} \in \mathbb{F}_{\mathbf{G}} \cap \mathbb{G}_{\delta}$. Moreover, \mathbb{K} is nowhere dense and $f|(\mathbb{R} - \mathbb{K})$ is continuous. We see that the condition (*) is fufilled. That is, $\mathbb{E} \in \mathbb{S}\mathbb{M}_2$. However, $f|\mathbb{K}$ is discontinuous at every \mathbb{b}_n and $[\mathbb{b}_n: n = 1, 2, \cdots]$ is dense in \mathbb{F} . There is no portion of \mathbb{K} on which the restriction of f is continuous. Hence $f \notin \mathfrak{S} \mathfrak{S}_1^*$.

Zahorski [5] defined a nested sequence of classes of functions \mathcal{M}_{i} (i = 0, 1, ..., 5) and proved that $\mathcal{M}_{0} = \mathcal{M}_{1} =$ \mathfrak{DB}_{1} . We now check if \mathfrak{DB}_{1}^{*} fits somewhere in this sequence. Theorem 3. (i) $\mathfrak{DB}_{1}^{*} \notin \mathcal{M}_{2}$. (ii) There is no inclusion relation between \mathfrak{DB}_1^* and \mathfrak{M}_i for i = 3, 4, 5.

Proof. (i) follows immediately from Lemma and the above example. For (ii), since $m_3 \supset m_4 \supset m_5$, it suffices to show that there exist $\varphi \in \mathcal{M}_5 - \mathcal{DB}_1^*$ and $\psi \in \mathcal{DB}_1^* - \mathcal{M}_3$.

Let $\texttt{G} \in \texttt{G}_\delta$ contain all rational numbers and have Lebesgue measure zero. By Lemma 11 in [5], there exists $\varphi: \mathbb{R} \longrightarrow [0, 1]$ in \mathcal{M}_5 such that $\{x: \varphi(x) = 0\} = G$. A moment's reflection shows that $x \notin \mathcal{B}_1^*$.

Now we define ψ as follows:

- $\psi(\mathbf{x}) = \frac{1}{2} \quad \text{if } \mathbf{x} \leq 0,$ = 0 if $x \ge 1$ or $x = \frac{1}{2^n}$, $n = 1, 2, \dots$, = 1 if $x = \frac{1}{2} \left(\frac{1}{2^{2n}} + \frac{1}{2^{2n-1}} \right)$, $n = 1, 2, \cdots$, = -1 if $x = \frac{1}{2} \left(\frac{1}{2^{2n+1}} + \frac{1}{2^{2n}} \right)$, n=0,1,2,...,
- and let ψ be linear on intervals $\left[\frac{1}{2^{n+1}}, \frac{1}{2}\right] + \frac{1}{2^n}$

and $\left[\frac{1}{2} \left(\frac{1}{2^{n+1}} + \frac{1}{2^n} \right), \frac{1}{2^n} \right], n = 0, 1, 2, \cdots$. Clearly $\psi \in \mathcal{H}$ and ψ is continuous on R-{0}. It follows that $\psi \in \mathfrak{BB}^*_{\mathfrak{P}}$. Let $E = \{x : \psi(x) > 0\}, x_0 = 0 \text{ and } c > 1$. For $\varepsilon > 0$, there exists n such that $1/2^{2n} < \epsilon$. Let $h = h_1 = 1/2^{2n+1}$. Then $h h_1 > 0$,

 $h/h_1 < c$ and $h \div h_1 < c$. Since $[x_0 + h, x_0 + h + h_1] \cap E = \emptyset$, $\forall \notin \mathcal{M}_3$. The theorem is proved.

REFERENCES

- [1] A. Csaszár and M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hung. 10 (1975), 463-472.
- [2] _____, Some remarks on discrete Baire classes, Acta Math. Acad. Sci. Hung. 33 (1979), 51-70.
- [3] R. J. O'Malley, Baire^{*} 1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187-192.
- [4] J. Young, A theorem in the theory of functions of a real variable, Rend. Circ. Mat. Palermo, 24 (1907), 187-192.
- [5] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math.Soc., 69 (1950), 1-54.

Received February 7, 1983