Janina Ewert, Department of Mathematics WSP, 76-200 Szupsk, Poland J.S. Lipiński, Institute of Mathematics, University of Gdańsk, 80-952 Gdańsk, Poland

ON POINTS OF CONTINUITY, QUASICONTINUITY AND CLIQUISHNESS OF REAL FUNCTIONS

Let X be a topological space and let Y be a metric space with metric d. By R^{m} we mean m-dimensional euclidean space.

A function $f: X \rightarrow Y$ is said to be:

- quasicontinuous at a point $x_{0} \in X$, if for every neighborhood V of $f\left(x_{0}\right)$ and every neighborhood U of x_{0} there exists a nonempty open set $U_{1} \subset U$ such that $f\left(U_{1}\right) \subset V[1,3,5,6,8]$; - cliquish at a point $x_{0} \in X$, if for every $\varepsilon>0$ and every neighborhood U of x_{0} there exists a nonempty open set $U_{1} \subset U$ such that $d\left(f\left(x^{\prime}\right), f\left(x^{\prime \prime}\right)\right)<\varepsilon$ for $x^{\prime}, x^{\prime \prime} \in U_{1} \quad[4,5,6,8]$.

Let us denote by $C(f), E(f)$ and $A(f)$ the set of points of continuity, quasicontinuity and cliquishness of f, respectively. Then we have $C(f) \subset E(f) \subset A(f)$, the set $A(f)$ is closed [4, Theorem l] and $A(f) \backslash C(f)$ is of the first category [6, Theorem 7].

Let us consider a triplet C, E, A of subsets of X such that:
$(*) \quad\left\{\begin{array}{l}C \in E \in A=\bar{A}, \quad C \text { is } G_{0} \text { and } \\ A \backslash C \text { is of the first category. }\end{array}\right.$

Does there exist a function $f: X \rightarrow Y$ for which $C=C(f)$, $E=E(f)$ and $A=A(f) ?$ When $X=Y=R^{l}$, a positive answer is given in [2, Theorem 2]. In [2] there can be found a characterization of the pairs $E(f), A(f)$ and $C(f), E(f)$ when X and Y are uniform spaces. In this paper we will characterize the triplet $C(f), E(f), A(f)$ for a function f defined on R^{m}.

Theorem 1

The sets $C, E, A \subset R^{m}$ satisfy $(*)$ if and only if there exists a function $f: R^{m} \rightarrow R^{l}$ such that $C=C(f), E=E(f)$ and $A=A(f)$.

Proof: The necessity follows from [6, Theorem 7] and from the results of [4].

Assume that (*) is satisfied. Since $A \backslash C$ is an F_{σ} set of the first category, there exists a sequence $\left\{F_{n}: n=0,1, \ldots\right\}$ of closed nowhere dense sets such that $F_{0}=\varnothing, F_{n} \subset F_{n+1}$ for $n=1,2, \ldots$ and $A \backslash C=\bigcup_{n=1}^{\infty} F_{n}$. Let $d\left(p, F_{n}\right)$ be the distance of a point p from the set F_{n}. For each $n=1,2, \ldots$ we define the function $f_{n}: R^{m} \Rightarrow R^{l}$ by

$$
f_{n}(p)= \begin{cases}10^{-n} \sin \left[d\left(p, F_{n}\right)\right]^{-1} & \left(p \notin F_{n}\right) \\ 2 \cdot 10^{-n} & \left(p \in F_{n} \backslash\left(E \cup F_{n-1}\right)\right) \\ 0 & \left(p \in F_{n-1} \cup\left(F_{n} \cap E\right)\right)\end{cases}
$$

The function f_{n} is continuous on the set $R^{m} \backslash F_{n}$ and for any point $p_{O} \in F_{n}$ we have $\lim \sup f_{n}(p)=10^{-n}$ and $\mathrm{p} \rightarrow \mathrm{p}_{0}$
$\mathrm{p} \neq \mathrm{F}_{\mathrm{n}}$

convergence of this series implies the continuity of g on the set $R^{m} \backslash \bigcup_{n=1}^{\infty} F_{n}=C U\left(R^{m} \backslash A\right)$. Let $s_{n-1}=\sum_{k=1}^{n-1} f_{k}$. Evidently $g=s_{n-1}+f_{n}+r_{n}$. If $p_{0} \in F_{n} \backslash F_{n-1}$, then s_{n-1} is continuous at p_{0} and $\left|r_{n}\right| \leq \frac{2}{9} \cdot 10^{-n}$, so we obtain the following inequalities

$$
\begin{align*}
& s_{n-I}\left(p_{0}\right)+\frac{7}{9} \cdot 10^{-n} \leq \underset{\substack{p \rightarrow p_{0} \\
p \notin F_{n}}}{\lim \sup } g(p) \leq \tag{I}\\
& \leq s_{n-1}\left(p_{0}\right)+\frac{11}{9} \cdot 10^{-n}, \quad \begin{array}{l}
p \not p \not F_{0} \\
n
\end{array}
\end{align*}
$$

$$
\begin{gather*}
s_{n-1}\left(p_{0}\right)-\frac{11}{9} \cdot 10^{-n} \leq \underset{\substack{p \rightarrow p \\
p \notin F_{n}}}{\lim _{n-1}\left(p_{0}\right)-\frac{7}{9} \cdot 10^{-n}} . \quad(p) \leq \tag{2}\\
s_{n} .
\end{gather*}
$$

Consequently

$$
\frac{14}{9} \cdot 10^{-n} \leq \underset{\substack{p \rightarrow p_{0} \\ p \notin F_{n}}}{\lim \sup } g(p)-\underset{p}{\operatorname{p} \notin \mathrm{~F}_{n}} \underset{n}{\lim \inf } g(p) \leq \frac{22}{9} \cdot 10^{-n}
$$

Hence the function g is discontinuous at each point of the set $A \backslash C=\bigcup_{n=1}^{\infty} F_{n}$. Thus we obtain

$$
\begin{equation*}
C(g)=C \cup\left(R^{m} \backslash A\right) \tag{3}
\end{equation*}
$$

Let us observe that altering the values of f_{n} on the set F_{n} does not change (1), (2) or (3) provided $\left|f_{n}(p)\right| \leq 2 \cdot 10^{-n}$ for $p \in F_{n}$. Moreover the density of the set $C(g)$ implies $A(g)=R^{m}$. Now let $p_{0} \in A \backslash E$. Then $p_{0} \in F_{n} \backslash\left(F_{n-1} \cup E\right)$ for some n and, by the definition of the function $g, g\left(p_{0}\right)=s_{n-1}\left(p_{0}\right)+2 \cdot 10^{-n}>$ $s_{n-1}\left(p_{0}\right)+\frac{11}{9} \cdot 10^{-n}$. According to (1) there exists a neighborhood
G of p_{O} such that $g(p) \leq s_{n-1}\left(p_{O}\right)+\frac{12}{9} \cdot 10^{-n}<g\left(p_{O}\right)$ for any $p \in G \backslash F_{n}$. Hence g is not quasicontinuous at p_{0}. Thus

$$
A \backslash E \subset A(g) \backslash E(g)
$$

Moreover (4) and (3) are true if we change the values of the function f_{n} on the set $F_{n} \cap E$ provided $\left|f_{n}(p)\right| \leq 2 \cdot 10^{-n}$ for $p \in F_{n} \cap E$.

Let $p \in E \backslash C$. Then there exists exactly one index n such that $p \in\left(F_{n} \cap E\right) \backslash F_{n-I}$. Since $C(g)$ is a dense set, there exists a sequence $\left\{p_{k}: k=1,2, \ldots\right\}$ of points belonging to $C(g)$ converging to p. The sequence $\left\{g\left(p_{k}\right): k=1,2, \ldots\right\}$ is bounded, so it contains a convergent subsequence. Without loss of generality we may assume that $\left\{g\left(p_{k}\right): k=1,2, \ldots\right\}$ is convergent. Now we define for $n=1,2, \ldots$ functions h_{n} letting

$$
h_{n}(p)= \begin{cases}\lim _{k \rightarrow \infty} g\left(p_{k}\right)-s_{n-1}(p) & \left(p \in\left(F_{n} \cap E\right) \backslash F_{n-1}\right) \tag{1}\\ f_{n}(p) & \left(p \notin\left(F_{n} \cap E\right) \backslash F_{n-1}\right)\end{cases}
$$

Let us put $h=\sum_{n=1}^{\infty} h_{n}$. Since $p_{k} \in R^{m} \backslash F_{n}$ for $k=1,2, \ldots$ and (2) imply $\left|h_{n}^{n=1}(p)\right| \leq 210^{-n}$. Thus, according to earlier remarks $\quad C(h)=C \cup\left(R^{m} \backslash A\right) \quad$ and $A \backslash E \subset A(h) \backslash E(h)$. Furthermore for any point $p \in E \backslash C$ we have $h(p)=s_{n-l}(p)+h_{n}(p)=\lim _{k \rightarrow \infty} h\left(p_{k}\right)$. Hence p is a point of quasicontinuity of h. Consequently $E \backslash C \subset E(h) \backslash C(h)$. Thus $C(h)=C \cup\left(R^{m} \backslash A\right), E(h)=E \cup\left(R^{m} \backslash A\right)$ and $A(h)=R^{m}$.

Let D be a dense border subset ${ }^{(1)}$ of R^{m}. Finaily we define a function $h^{\prime}: R^{m} \rightarrow R^{l}$ by $h^{\prime}(p)=d(p, A)$ for $p \in D$ and $h^{\prime}(p)=0$ for $p \notin D$. Evidently $A=C\left(h^{\prime}\right)=E\left(h^{\prime}\right)=A\left(h^{\prime}\right)$. Then for the function $f=h+h$, we have $C(f)=C, E(f)=E$ and $A(f)=A$.

Theorem 2

Let X and Y be real normed spaces and let X be a Baire space. The sets $C, E, A \subset X$ satisfy (*) if and only if there exists a function $f: X \rightarrow Y$ for which $C=C(f), E=E(f)$ and $A=A(f)$.

Proof: The necessity follows from [4] and [6].
As in the proof of Theorem 1 we can show that there exists a function $f_{1}: X \rightarrow R^{\perp}$ such that $C=C\left(f_{1}\right), E=E\left(f_{1}\right)$ and $A=A\left(f_{1}\right)$. (The existence of a dense border subset $D \subset X$ which appears in the last part of the proof follows from the theorem of Sierpiński [7]). Let M be a one dimensional subspace of Y and let $i_{M}: M \rightarrow Y$ be the embedding of the subspace M in the space Y. By $T: R^{l} \rightarrow M$ we denote the natural isomorphism. Then $f=i_{M} \circ T \circ f_{1}: X \rightarrow Y$ is the function for which $C=C(f)$, $E=E(f)$ and $A=A(f)$.
${ }^{(1)}$ Editorial Comment: A dense border set is a dense set whose complement is also dense.

References

I. W. Bledsoe, Neighborly functions. Proc. Amer. Math. Soc. 3(1952), 114-115.
2. J. Ewert, J.S. Lipiński, On points of continuity, quasicontinuity and cliquishness of maps (to appear).
3. S. Kempisty, Sur les fonctions quasicontinues. Fund. Math. 19(1932), 184-197.
4. J.S. Lipiński, T. Šalát, Ón the points of quasicontinuity cliquishness of functions. Czech. Math. J. 21 (96), (1971), 484-489.
5. S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty. Coll. Math. 8(1961), 47-53.
6. A. Neubrunnová, On quasicontinuous and cliquish functions. Časopis Pěst. Mat. 99(1974), 109-114.
7. W. Sierpiński, Sur la décomposition des espaces métriques en ensembles disjoints. Fund. Math. 36(1949), 68-71.
8. H.P. Thielman, Types of functions. Amer. Math. Monthly. 60(1953), 156-161.

