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 ON THREADING CONTINUOUS FUNCTIONS THROUGH COMPACT SETS

 1 . Introduction.

 Suppose E is a compact. set in [0,1] x [0,1]. Under what

 circumstances is it true that for every point there

 exists a function f continuous on [0,1] such that ^(xq) = Yq
 and such that the graph of f is contained in E? A moment's re-

 flection reveals that the sets E^ = {y : (x,y) č E] must all be
 nonempty and must somehow connect with each other. More precisely,

 one can easily verify that, if x x^ € [0,1], then the sets E^
 must converge to E in the Hausdorff metric; i.e., the function

 xo

 E* which maps x into E^ must be a continuous function from

 [0,1] into tne space of compact subsets of [0,1] furnished with

 the Hausdorff metric. One might ask whether this condition is suf-

 ficient as well as necessary. In Example 2.1 we show that the con-

 dition does not suffice in general. In Section 3 we show it is suf-

 ficient if each of the sets E^ is nowhere dense in [0,1]. In
 Section 4 we study the general setting.

 This problem had its origins in a question related to differen-

 tiation theory. We discuss this connection briefly in Section 5.

 1 This author was supported in part by an NSF grant.
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 2 . Preliminaries .

 It is convenient to set apart some definitions and notations

 which appear frequently in the sequel.

 Let S denote the family of all closed subsets of [0,1] fur-

 nished with the Hausdorff metric d defined by

 d(S1,S2) = inf{6 > 0 : sļ0) => S2 and S<6) => Sj}
 / Jř '

 where, for example, sļ = {y. : |x-yļ < Ô for some x £ S^}.
 It is an exercise in real analysis to show that (S,d) is a

 compact metric space. If F c [0,1], we shall denote the comple-

 ment of F relative to [0,1] by F°.

 Let E be a nonempty compact subset of [0,1] * [0,1]. For

 each x € [0,1], let Ex = {y : (x,y) 6 E}. If the function E*
 defined by E*(x) = E is a continuous function from [0,1] to

 X

 (S,d), then we call E an admissible set.

 It is easy to show that E raust be admissible if the problem

 posed in the Introduction has a solution. To see that this condi-

 tion does not suffice consider Example 2.1 below.

 2.1 Example. E consists of those portions of the following

 lines which lie in the closed unit square: y = 1, x = 0 and

 y = kx for k = 0,1,2,... . It is geometrically clear (but

 tedious to check) that the map E* is continuous. However, it

 can also be shown that there is no continuous real function f on

 [0,1] with graph(f) CE and f(0) € (0,1). Indeed, any neighbor-

 hood of (0,yg) which does not contain (0,0) meets E in a
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 countable number of disjoint line segments with (0 , Yq) contained

 in a vertical segment.

 3. , Nowhere Dense Sections.

 Let E be an arbitrary admissible set. Let f(x) = infļE^}.
 It is easy to verify that f is continuous and that graph(f) c E.

 Thus each admissible set contains the graph of some continuous func-

 tion on [0,1]. Such a continuous function f cannot, in general,

 be chosen to satisfy *(xq) = Yq f°r anY particular ^ ^
 as Example 2.1 illustrated. The difficulty we encounter in that

 example is that continuity of the function E* requires that the

 entire segment [0,1] be contained in EQ. Such a situation can-
 not occur if E is nowhere dense for every x € [0.1] .

 X

 In this section we show that if E is an admissible set and

 is nowhere dense for each x € [0,1], then our problem h?s a

 solution. The proof is based on several lemmas which together pro-

 vide a convergent sequence of functions, the limit of which is a

 solution to the problem. The main construction is developed in 3.5

 below.

 For the remainder of this section we assume E is an admis-

 sible set with E^ nowhere dense in [0,1] for each x € [0,1].

 3.1 Lemma . Let £ > 0, ^ X0 < There exists a func-
 tion g and a positive number S such that g is relatively con-

 tinuous on [xQ, Xq+6] , graph(g) c: E and 0 Ś gU()) " yQ <
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 Proof. Choose b € E fi (yn, y/>+e) and define g by g(x) =
 x0

 sup{y : y £ E^, y < bj. Since E is admissible, there exists
 6 > 0 such that b 6 EC for all x € [xn, x„+ô] . Since E is X 0' 0

 closed, the graph of g is contained in E, and the continuity of

 g on [Xq, Xq+ô} follows from the continuity of E*. Finally,

 the inequalities 0 Í g(x^) - y^ < e follow from the inequalities

 y0 < b < y0 + 6.

 The function we seek is a limit of a sequence of functions,

 called e-functions, which possess certain desirable properties.

 3.2 Definition. Let e > 0. A function f defined on a half-

 open interval (a,b) c [0,1] is called an e-function if:

 (1) graph(f) CE,

 (2) f is right continuous,

 (3) for every x 6 [a,b) there is Ô > 0 such that x + ô Š b

 and f is continuous on (x, x+ô) , and

 (4) for every x € (a,b), 0 Š f(x) - lim _f(s) < e.
 s -* x

 The lemma below shows that e-functions possess a certain

 Darboux-like property.

 3 . 3 Lemma . If f is an e-function on {a,b) and c € (a,b)

 with f(a) > y > f(c) for some number y, then there exists

 x 6 (a>c) such that f(x) = y.
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 Proof: Let x = inf{t € [a,c] : f(t) Š y} . Then also

 X = sup { t 6 [a,x] : f(t) Š y}. Thus f(x) Ś y by (2) and

 f(x) Š y by (4), completing the proof.

 3 . 4 Lemma . Let g be an e-f unction on [a,b). Then

 lim _g(s) exists,
 s -> b

 Proof. Let U = lim _g(s) and L = lim _g(s). If L f U,
 s b s b

 then 3.3 implies that the entire segment [L,U] is contained in

 E^ (since (x,f(x)) € E for all x and E is closed) which contra-

 dicts the underlying assumption that each set E^ is nowhere dense.

 3 . 5 Lemma . Let (x^y^ÇE, > e > 0 and g an e^-f unction

 on [Xq,1) with 0 S s(xq) ~ Yq < Then there exists an

 ^-function f on [x^,l) such that f Š g on [x^,l) and

 0 é f(xQ)-y0 < £.

 Proof. Let ^ = {(f,x) : f is an e-function on [x0>x) such

 that f è g on (Xq,x) and 0 Ž ^(*q) " < Define an order-

 ing Š on £ by: (f^,x^) ž (f^x^) whenever x^ Ś x^ and

 f^ = f^ on [Xq,x^ ) . We show by Zorn's Lt»mma that £ contains

 a maximal element (f,x) with x = 1 .

 Suppose that {(f^,x^)} is a totally ordered subset of £

 Define x 00 = sup xx ^ and define g Oo on [x Q ,x 00 ) by g Oo (t) = 00 ^ Oo Q 00 Oo

 lim f^(t). It is obvious that conditions (l)-(4) of 3.2 hold, so
 (g ,x ) is an upper bound for {(f.,x.)}.
 oo Co /'. A
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 We combine the proof that & is non-void with the proof that

 any maximal element of £ must have the form (f,l) by showing

 that for any point (zj>yļ) ^ E P! {(z^,s) : s Ś g(Xj)}, there is

 a *6 > 0 and a relatively continuous function g^ defined on

 [z^zj + Ô) with 0 Š gjUj) - Yj < £, gj(t) Ś g(t) and

 graph(g^) c E. Taking = sŁlOW ttiat ^ is
 non-void. If is a maximal element of t? , then taking

 (z..,y'J i 1 = (x , lim_ *-00 8o.it))> which exists by 3.4, we see that i 1 . . *-00

 t+Xoo . .

 xfc « 1 (or we contradict maxima Lity of (x^g^)). To construct

 gj and 6 we consider 2 cases.

 Case 1: g(z^) = y^. Choose 6 > 0 such that g is relatively

 continuous on [z^, z^+ó]. (Such a 6 exists by (2) and (3) of

 3.2.) Set gj = g on [zļ, xl + 6).

 Case 2: g(z^) > y^. By 3.1 there exist 6^ > 0 and a relatively

 continuous function g^ on fz^z^+ôj) such that graph(g^) e E

 and O Ś gļUļ) " Yj » minCfijgCz^-yj) . Since g is an £j-

 function on [Xq,1), there is a 0^ > 0 such that g is rela-

 tively continuous on [z^,z^ + õ^]. Set Ô = min(6j,Ôj) and

 gj = min (gļ,g) on [zļlzļ + 6).
 Thus & is non-void and by Zorn' s Lemma it contains

 maximal element (f,x), where x = 1 by the previous paragraph.

 This proves the lemma.
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 3 . 6 Lemma • Let (x^, yQ) 6 E. There exists a continuous function

 g on [xQ, 1] such that graph(g) cE and g(xQ) = yQ.

 Proof. Let 8q(x) ä sup E^. Then gQ is continuous and, in partie-
 *

 ular, is a 1-f unction on [Xq,1). Repeated use of 3.5 gives rise

 to a sequence of functions on [x^,l) such that for each n,

 gn is a ì -function, gn+1 ¿ g|ļ, and 0 š gQ(x0) - yQ < ± . Let

 g = inf gß. Then g(xQ) = yQ and graph (g) c E. Set g(l) =
 n

 lim lim _g n (x), which exists by 3. A. It remains to show that n -» oo X -> 1~ n
 g is continuous .

 Suppose U = lim _g(x) > lim _g(x) = L for some x €
 t -> X t ■* X

 We show that (L,U) c E . Let y € (L,U) and 6 €(0, min(y-L, U-y)).

 Choose tj < t^ < x such that x-tļ < ö and Ig(tj) - u| <6 and

 ļgit^) - l| <6. Now choose N so that %(t-ļ) " U < ^ an<*

 gN(t2) - L <0. Then gN(tj) > y > follows from 3,3

 that there exists c £ (t^,t2) with 8jjCc) = Y* It follows that
 (L,U) c E , contradicting our assumption that E is nowhere
 3C X

 dense .

 Similar arguments show that lim +g(t) exist for all
 t -» x

 x €[Xq,1) and that these limits equal g(x) everywhere on (Xq,1).

 3.7 Theorem. Let E be an admissible subset of [0,1] x [0,1].

 If each of the sets E^ (0 Ś x Š 1) is nowhere dense, then for

 every (xQ»y(p c^» exists a continuous function f on 10,1]

 such that graph(f) c E and f (x^) = yQ.
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 Proof. The result follows directly from 3.6 and its "left hand

 analogue" on [0>x^].

 4. - The General Case.

 Example 2.1 shows that the (possibly) intuitive notion that the

 existence of segments in E "can only help matters" is incorrect.

 As we saw in §3, the absence of segments guarantees that certain

 limits must exist: in essence, if a bounded continuous function on

 (a,b) is not uniformly continuous, then the closure of the graph of

 f contains a vertical interval; similarly, if a uniformly bounded

 decreasing sequence of continuous functions has a discon-

 tinuous limit, then the closure of the union of the graphs of the

 {f 4 } ' contains a vertical interval. 4 n '

 The main result of this section is that if E is admissible,

 then our problem has a solution if and only if to each (x^y^GE

 there corresponds an open interval Ï and a continuous function g

 on I O [0,1] such that graphCg) c E, xQ £ 1 and g(*0) = yQ;
 that is, E has the desired property locally. This will happen if

 E possesses this local property at all points belonging to vertical

 segments contained in E. It is easy to see that this will occur

 if, for example, each (one dimensional) interior point of such a

 vertical segment is a (two dimensional) interior point of E. That,
 C* c* , c

 in turn, happens if the function E defined by E (x) , = E^ is
 continuous. Neither of these last two conditions is necessary, how-

 ever, as Example 4.1 shows.
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 4.1 Example: En u = 10,1], E = {(2"n, 2"n k) : k = 0, . . . ,2n-l) , u 2~n
 E also contains the line segments joining the pairs

 (2~n, 2"nk), (2~n~' 2"n_1(2k))

 and

 C2"n, 2"ak), (2'11"1, 2~n-1(2k-H)) .

 for all n = 0,1,2,... and k = 0,...,2n-l.
 c '

 One can check that x •» E is continuous while x ■+ E ' is not con-
 X X

 tinuous. Nor does y € E^ imply (x,y) £ Interior(E). Nonetheless,
 for each ^ ® there is clearly a continuous function f on

 10,1] with graph(f) c: E and f(*Q) = y0-

 We begin with some notation and terminology.

 A set EC [0,1] x t0,l] is said to have the local continuity

 property if E is a closed set with the property that for any

 (x,y) 6 E there is an open interval 1 containing x and a con-

 tinuous real function f with domain I O [0,1], f(x) - y and

 graph(f)c E. Let (x^y^) denote a fixed element of E with

 Xq t 1. We shall define a mostly continuous E-function from

 U,y ) to be a pair (f, where f is a real function on

 a non-degenerate interval [xQ, tf] c [xQ,l], fCXg) = yQ, Tf

 is a closed subset of [x^,t^] not containing x^ which is
 well-ordered by the usual ordering, f is relatively continuous

 on [x0,tf]'rf, graph(f) c. E and for every t 6

 % ( lim _sup f(s) + lim _inf f(s)) = f(t) = lim +f(s) (where the
 s ■* t s -» t s -* t

 last equality is ignored if t = t^).
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 We define a partial ordering on the mostly continuous

 E-functions from (xQ,y0) by (f,rf) > (g,Tg) if tf ł t ,
 f(x) s g(x) for every x Ś t , T D T and if s 6 T., t € T

 g * g i g

 with t ž s, then s € F . An alternate form of the last condition
 S

 is rfi3 rg and l"f'r (sup(rg), tfl.

 4 . 2 Lemma . Let E be a subset of [0,1} x [0,1] which has the

 local continuity property and let ( XqiYq) £ E with x^ î 1 . There

 is a mostly continuous E-f unction from (xo>yQ)» denoted by

 (f,Tf), such that domain(f) - [Xq,1].

 Proof. Since E has the local continuity property, there exist

 mostly continuous E-functions from (x^y^) , and if Cg,r^) is a

 maximal mostly continuous E-function from (Xq^q), then

 domain(g) = [x^,l]. Thus by Zorn's Lemma it suffices to show

 that any totally ordered family {(f. ,r_ )} of mostly continuous
 fX

 E-functions from an upper bound.

 Let tf r = sup{t, } and let Pf 1 =Ü T U {t.}. r r X *X 1 X rX r

 Define f on [x^t^] as follows. If x6 [x0,tf), then there

 is a such that for all X Š X^, = ^ Thus
 lim f. (x) exists, so set f(x) = lim f^Cx). Define
 X X XA

 f(t,.) - lim f(x) + lim _f(x)).
 x -* t~ x -* tf

 It remains to show that (t^, f(t^)) € E, for then it will be clear
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 that (f»rf) is a mostly continuous E-function from (*0>yo^

 which is an upper bound for {(fx,Tf A )}. A T'

 To show that (tf, f(tj)) € E we consider two cases.

 Case 1: f is left continuous at t^.

 Since lim _(t, f(t)) = (tf, f(tf))> (t, f(t)) € E for all
 t ■* t _

 t < t^ and E is closed, it follows that (t^, f(t^.)) 6 £•

 Case 2: U = lim ^f(t) > I = lim _f(t).
 t -♦ t' t •> t"f"

 Let 6 > 0. We shall show that there is a c € (t^-ô, t^)

 such that f(c) = f(t^) = ^(U+L) . Choose a,b € (t^-6, t^) and '

 such that f - and [Xg,b], a < b, f(a) > f(t^), f(b) < f(t^).

 Set c = inf{t € [a,b} : f(t) Ś f(tj)}. Then f(t) > f(t^) for all

 t 6 ta,c). Since f = f^ on [a,c] and (f^,r^ ) is a mostly
 '

 continuous E-function from (xQ»yQ)> we conclude that f * f^ is

 continuous at c. Thus f(c) = so (t^, f(t^)) £ E, since

 (c, f(c)) 6 E and dist((c, fCc)), (tf, f(tf))) < 6.

 We are now ready to establish the main result of this section -

 if E has the local continuity property, then continuous functions

 meeting specified initial conditions exist on [0,1]. The proof of

 the theorem follows natural lines but is rather lengthy because of

 a technical difficulty which arises. Because of this, we devote

 a paragraph to describing this difficulty as well as our manner

 of resolving it.
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 The basic idea behind the proof is to use the mostly continuous

 function f whose existence is guaranteed by 4.2 as a starting

 point. We modify f near points of the set in order to

 construct the desired function g. The inductive process follows

 natural lines. The technical difficulty arises when we attempt

 to define gQ in terms of the functions g , a < ß. To create
 P a

 continuity at x^ requires "backtracking": a redefinition on
 some interval [x0 - ô, x0] , -thus we cannot create the desirable

 P P

 extension property that each g^ extends all preceding gQ.
 How do we thus construct a single function g with all desired

 properties? The trick is to predetermine the magnitudes of these

 "backtrackings" in a manner which permits an adequate substitute

 for the unavailable desirable extension property. We do this by

 means of the function j appearing at the beginning of the proof

 of the theorem.

 4.3 Theorem. Let E have the local continuity property and let

 (x , y ) € E. There is a continuous real function g on [0,1]
 O o

 with g(xQ) = yQ and graph(g) c E.

 Proof. By 4.2 let (f,F^) be a mostly continuous E-function

 from (xq, yQ) with domain (f) = [xq, 1], and let = ^xc^lSa<ß

 be a listing indexed by the ordinals less than ß^ with the ordering

 preserved (i.e., implies x^ > xffl ) . Now ß^

 is countable since T c [0,1] and xa+j ~ xa > 0 f°r ®*ch

 1 < fir + 1 < ßj. Thus we can define a 1-1 correspondence a ■+ NQ

 between the ordinal interval [ 1 » ßj ) and the positive integers.
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 Define j: [ 1 , ) -» [0,1] by

 {' X 2 ~na a -

 2 if a is a liruit ordinal ,

 X - X if a-1 exists«
 a a-1

 If a is a limit ordinal and a < ß, , we define U = lim f (x) 1 , Of „
 * „ a

 and L - lim f(x). For any ordinal a with a + 1 < ßj, we
 x " xa~

 define, UQ+ļ = supíf(x) : x € [xff, "o+ļJĪ and

 Vi s iafif<x> : x€*V Vl1}*

 We now define by transfinite induction a family ^80(^i<a<ß

 of functions with the following properties.

 (1) For each a, is relatively continuous on [xq, *al »

 graph(ga)cE, ga(xo) = yo> gff(xa) = f(xa).

 (2) If 1 < Ô < Of are ordinals < with x¿> - xa ~

 then ga = g& on [xq, xfi] .
 (3) For each a,

 range(ga+1 | ^ Xfl1+1J* 3 La+1 + 4 Ua+1' 4 L0f+1 + 4 Ua+lJ'

 Suppose {sa5 have been defined for all 0 < a < ß to
 satisfy conditions (1) - (3). To define gQ we consider two

 P

 cases .

 Case 1: ß is not a limit ordinal.

 Subcase (a): f is continuous at xft. Define g0 = , on
 p p p-i

 í*o» xß-iJ (if P ^ 1) aad 8^ = f °n xßl- It: is easily
 checked that conditions (1) - (3) hold.

 Subcase (b) : U = lim f(x) > lim _f(x) = L. Since E has the
 x -xp" x -> xß"
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 local continuity property, there is a q > 0 and a continuous

 function h defined on lx0-q, x0] such that h(x0) = f(x„)
 P P P p

 and graph(h) c: E. Since f(*ß) = + L) , the relative continuity
 of - h on [x0-q, xD] and f on [x0 , , x_) imply that there are P P p-1 , , P

 points r < s < t € xßl such that f(t) = h(t),
 f(r) > I + ì Lß and f(3) < J + f Lß. Define gß = gß_j

 °n [xo, Kg_1l (if ß t 1)> 8ß = f w ^ß-l» ^ and 8ß = h
 on [t, The existence of r and s insure that condition (3).

 is satisfied, while conditions (1) and (2) are easily checked.

 Case 2: 6 is a limit ordinal. Since F _ is closed, x0 = lim x .

 We now define a continuous function $ T on fx , xn) as follows. T o' , ß'

 First note that lim _ j (a) = 0. (This follows from 2 j(<*) < 2.)
 a -+ ß~ _ a<ßj

 Thus for any x € {xqJ xß) there are ordinals < ot^ such that

 X < xa < x0f2 < xß and xa " ^x<p > xa for a11 a2 - a < P'
 By condition (2) we have g = g on [x , x ] . Thus we can

 1 ° 1
 set $(x) = lim _ g (x) and conclude that <|> is continuous at

 a •* ß

 x (since $ = ga in a neighborhood of x) and <K*) = 8Q(X)

 for all < o < ßj . In particular, for any 6 < ß there is

 an ao > 6+1 with aQ < ß and ga = gg+1 on [xq, xß+1]

 for all 3 > a >_ aQ (by the above facts and condition (2)).

 Before we define g„ we must establish two facts about the
 P

 function <ļ>, namely that lim _<ļ>(x) > £ + jr U_ and
 x -* xQ

 p

 3 1
 lim ät-fx). " < y L0 + 7 UQ. We give details for the first of these,

 * *

 and the second is similar. By condition (3) for each 6 < ß
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 there is a point tfi 6 [Xg, x^] such that g^Ctg) > f U6+1 + ' Lfi+1 .

 For any such ô by the previous paragraph there is an ctQ > Ö

 such that aQ < ß1 and gQ = gg+ļ on [xq, Xg+ļ] for all ß > a,

 a % aQ. Thus «Ktg) = lim _ga(t6) = gg+jCtg), so
 ot ■> ß

 īīm > îiœ _ <Kt.) = lim _ gô+1(tr)
 X x„ ô •* fi ô -» ß

 p

 - > īīm (7 4 U... 6+1 + 7 4 L. 6+1 ,) - > 7 4 Tira UÄX1 0+1 + 7 4 lim L- 6+1 , - ô * ß" 4 6+1 7 4 6+1 - 7 4 Ô - ß" 0+1 7 4 ö~ß" 6+1 ,

 = 4 Uß + 4 V

 1 3
 The inequality lim $(x) < ^ U. + ^ L is derived in a similar

 x - xß"
 way.

 Nov to define gâ we have two subcases.
 P

 Subcase (a): Lim _<|>(x) = Q exists. By the previous paragraph
 X -> Xp

 we have = LQ = f(xQ) = Q, so we can simply define g0 on
 P P P P

 [xq, Xp] to be the relatively continuous extension of $ to
 lx f Xa! (i.e. <J>(x0) = Q) . Conditions (1) - (3) clearly hold, op f p

 Subcase (b) : As we showed above, f(xrt) = ~(U0 + L„) lies between
 p 2 p p

 lira <J)(x) and lim $(x), so just as in Case 1, Subcase (b) ,

 X -> xß" xß"
 above we can find q > 0, a relatively continuous function h

 on [xD - q, x_] and a point t £ [x_ - q, x_) such that
 P P P P

 ~nB p (xß - t) < 2 p and h(t) = <1>(t) - If g = $ on (x , t]
 P P o

 and g_ = h on [t. x_] , it is easily shown to satisfy conditions
 P P

 (l)-(3).
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 Since rf is closed, is oot a limit ordinal, so either

 Xp = 1, in which case g^ is the desired function g;
 or else f is continuous on [x0 ,,1], so

 pr!

 /gļj ,(*) if *„ < * < «p ,
 g(x) =' will work.

 Lf(x) if Xß < X < 1

 The theorem follows by the above argument and its "left hand

 analogue" on [0, xo].

 We end this section with two observations and a problem.

 C*
 1) The conditions E* and E continuous together imply a sol-

 ution for our problem relative to £. The former condition is neces-

 sary but the latter is not. If each is nowhere dense, then the

 latter condition is net trivially.

 (2) Theorem 4.3 is more general than Theorem 3.7 but a proof that

 "If E* is continuous and if each E is nowhere dense, ' then E X '

 has the local continuity property.", seems no easier or shorter than

 the proof of 3.7.

 Under the hypotheses of Section 3, if to each ^ ^ an(*

 e > 0 there corresponds a neighborhood I of xQ and a continuous

 function f on I such that either *(*q) = Yq an<* graph(f) c E

 or |f (*0)-y0l < 5 aa<* grapk(f) c: E°, then E has the local con-
 tinuity property.

 Q

 The problem occurs when £ and E are so badly entwined that

 neither situation occurs. Theorem 3.7 tells us that such entwinements
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 do not occur when E^ is nowhere dense for every x € [0,1].

 3) Perhaps a sufficient condition can be phrased in terms of local

 arc-wise connectedness. We have been unable to find such a condition.

 We mention that local arcwise connectedness is not a necessary condi-*

 tion (let E be a Cantor-set of horizontal line segments, e.g.,

 E = [0,1] x c, C = Cantor set). Nor is local-arcwise connected-

 ness at a point sufficient for the local continuity property at

 that point. (A simple example shows this.) But we have been un-

 able to determine whether local arcwise connectedness at every point

 of E implies the local continuity property.

 5 . Applications to Path Derivatives.

 The classical theorem that the Dini derivates of a continuous

 function are in Baire class at most 2 has been extended in various

 ways. In an attempt to obtain a unified theory, Alijani [1] has

 been studying Path Derivatives [2]. A collection of sets

 E = {E^ : x € R} is called a system of paths if for every x 6 R,

 x is a point of accumulation of Ey. The E-derivates of a function
 F at a point x are defined in terms of the extreme limits of the

 difference quotient of f as t -* x through points in E^; e.g.,
 __

 F1 (x) = Um

 E t -x C - x
 t e E

 sical proofs in this setting, certain structures on the system E

 are needed. In particular, if the function E* is continuous, as

 in Sections 3 and 4, then a tractable theory develops. If one

 interprets E as a subset of the plane, rather than as a system
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 of paths, the conclusions of Theorems 3.7 and 4.3 suffice. These

 conclusions do not follow from the continuity of E* alone, of

 course; but Ali j ani has shown that a somewhat weaker conclusion

 suffices.
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