Real Analysis Exchange Vol 7 (1981-82)

Zygmunt Wójtowicz, Wyzsza Szkoła Pedagogiczna, Słupsk

THE STRUCTURE OF THE SETS {X: f(x) = h(x)} FOR A TYPICAL CONTINUOUS FUNCTION f AND FOR A CLASS OF LIPSCHITZ FUNCTIONS h.

1. Introduction.

Let R denote the space of real numbers and let C denote the space of continuous functions f: $[0,1] \rightarrow R$ equipped with the uniform norm $||f|| = \sup \{|f(x)| : 0 \le x \le 1\}$.

A subset A of C is said to be <u>residual in</u> C if its complement C\A is of the first category in C. If $f \in C$ and $\varepsilon > 0$, the open ball {g ϵ C: ||g - f|| < ε } of C is denoted as usual by B(f, ε).

An interval $I \in [0,1]$ is said to be a <u>rational interval</u> if both of its endpoints are rational, and I will be called an <u>open</u> <u>interval</u> if it is open relative to [0,1].

Let f be a given function in C and let $\lambda \in \mathbb{R}$. For every $c \in \mathbb{R}$, the set {x: $f(x) = \lambda x + c$ } is called a <u>level of</u> f <u>in the</u> <u>direction</u> λ . By a <u>level of</u> f we mean, in general, a level of f in some direction $\lambda \in \mathbb{R}$.

Let $a_{f,\lambda} = \inf \{f(x) - \lambda x: 0 \le x \le 1\}$ and

 $b_{f,\lambda} = \sup \{f(x) - \lambda x: 0 \le x \le 1\}.$

The levels of a function $f \in C$ are said to be <u>normal in a</u> <u>direction</u> $\lambda \in R$ if there exists a countable dense set $E_{f,\lambda}$ in $(a_{f,\lambda}, b_{f,\lambda})$ such that the level $\{x: f(x) = \lambda x + c\}$ of f in the direction λ is

- a) a perfect set when $c \notin E_{f,\lambda} \cup \{a_{f,\lambda}, b_{f,\lambda}\},\$
- b) a single point when $c = a_{f,\lambda}$ or $c = b_{f,\lambda}$, and
- c) the union of a non-empty perfect set P with an isolated point $x \notin P$ when $c \in E_{f,\lambda}$ (P and x depending on f, λ and c).

It has been proved by A.M. Bruckner and K.M. Garg [1, Theorem 4.8] that there exists a residual set of functions f in C such that the levels of f are normal in all but a countable dense set of directions Λ_{f} in R, and in each direction $\lambda \in \Lambda_{f}$ the levels of f are normal except that there is a unique element c of $E_{f,\lambda} \cup \{a_{f,\lambda}, b_{f,\lambda}\}$ for which the level $\{x: f(x) = \lambda x + c\}$ contains two isolated points in place of one.

A family of functions $H \subset C$ is called a <u>2-parameter family</u> if for every pair of numbers $x_1, x_2 \in [0,1]$ ($x_1 \neq x_2$) and for every pair of numbers $y_1, y_2 \in R$ there exists a unique $h \in H$ such that $h(x_1) = y_1$ and $h(x_2) = y_2$.

In [2] Bruckner and Garg raised the following question. What conditions on H will guarantee that the analogue of the above theorem holds on replacing the family of straight lines $\{\lambda x + c\}$ by H?

In the present paper we show that the above question has an affirmative answer if the 2-parameter family H is almost uniformly Lipschitz. For the proof of this fact we use the methods of Bruckner and Garg [1].

In §2 we state some properties of a 2-parameter family H and in §3 we show that the above question has an affirmative answer

(Theorem 1) when H is almost uniformly Lipschitz. The proofs are to appear in [3].

2. Properties of a 2-parameter family.

Let H denote a 2-parameter family of continuous functions.

A function h ϵ H for which c = h(0) and λ - h(1) - h(0) will be denoted by h_{λ,c}. The number λ is called the <u>increase</u> of the <u>function</u> h_{λ,c}. If H_{λ} = {h ϵ H: h(1) - h(0) = λ }, then it is clear that H_{λ_1} \cap H_{λ_2} = Ø when $\lambda_1 \neq \lambda_2$ and $\bigcup_{\lambda \in \mathbb{R}}$ H_{λ} = H.

1. Proposition. If $x_0 \in [0,1]$, $y_0 \in R$ and the functions h, $h_1 \in H$, $h \neq h_1$ are such that $h(x_0) = h_1(x_0) = y_0$, then either $h(x) < h_1(x)$ when $0 \le x < x_0$ and $h(x) > h_1(x)$ when $x_0 < x \le 1$; or $h(x) > h_1(x)$ when $0 \le x < x_0$ and $h(x) < h_1(x)$ when $x_0 < x \le 1$. 2. Proposition. For every triple of numbers $x_0 \in [0,1]$ and y_0 , $\lambda \in R$ there exists a unique function $h \in H_{\lambda}$ such that $h(x_0) = y_0$.

3. Proposition. $\lim_{n \to \infty} ||h_{\lambda_n, c_n} - h_{\lambda, c}|| = 0$ if and only if $\lim_{n \to \infty} c_n = c$ and $\lim_{n \to \infty} \lambda_n = \lambda$.

<u>4.</u> Proposition. For every natural number n, let (x'_n, y'_n) , (x''_n, y''_n) , (x', y'), $(x'', y'') \in [0,1] \times \mathbb{R} (x'_n \neq x''_n \text{ and } x' \neq x'')$ and let $h_{\lambda_n, c_n}, h_{\lambda, c} \in \mathbb{H}$ be functions such that $h_{\lambda_n, c_n}(x'_n) = y'_n$,

$$\begin{split} h_{\lambda_{n},c_{n}}(x_{n}^{"}) &= y_{n}^{"}, \ h_{\lambda,c}(x^{'}) &= y^{'} \ \text{and} \ h_{\lambda,c}(x^{"}) &= y^{"}. \\ & \text{Then if lim} \ (x_{n}^{'},y_{n}^{'}) &= (x^{'},y^{'}) \ \text{and} \ \lim_{n \to \infty} \ (x_{n}^{"},y_{n}^{"}) &= (x^{"},y^{"}), \\ & \text{then lim} \ ||h_{\lambda_{n},c_{n}} - h_{\lambda,c}|| &= 0. \end{split}$$

3. The structure of the set {x: f(x) = h(x)} when $f \in C$ and h belongs to a 2-parameter family of continuous functions that is almost uniformly Lipschitz.

Let $f \in C$, $h \in H$ and let I be a subinterval of [0,1]. The graph of h is said to support the graph of f in I from <u>above(below</u>), if $h(x) \ge f(x)$ ($h(x) \le f(x)$) for every $x \in I$ and there exists a point x_0 in I such that $h(x_0) = f(x_0)$. Further, if the point x_0 is not unique, then the graph of h is said to <u>support the graph of f in I from above (below) at more than one</u> <u>point</u>. We will say that the graph of h supports the graph of f in I if the graph of h supports the graph of f from above or from below.

If I and J are two disjoint subintervals of [0,1], the graph of h will be said to support the graph of f in I and J, if it supports the graph of f in I as well as the graph of f in J. Similarly for three or more mutually disjoint subintervals of [0,1].

<u>1. Lemma.</u> For every function $f \in C$ there is at most a countable set of functions in H which support the graph of f in two (or more) disjoint open subintervals of [0,1].

Let $f \in C$ and $\lambda \in R$. We denote by

274

$$\alpha_{f,\lambda} = \inf \{c \in R: \{x: f(x) = h_{\lambda,c}(x)\} \neq \emptyset \}$$

 $\beta_{f,\lambda} = \sup \{c \in R: \{x: f(x) = h_{\lambda,c}(x)\} \neq \emptyset\}.$

<u>2. Lemma.</u> For every function $f \in C$ and for every number $\lambda \in R$ the graph of the functions $h_{\lambda,\alpha}$ and $h_{\lambda,\beta}f_{,\lambda}$ support the graph of f in [0,1] from above and from below respectively at least at one point.

<u>3.</u> Lemma. For every function $f \in C$ there is at most a countable set $\Lambda_f \subset R$ such that for every $\lambda \in R \setminus \Lambda_f$

a) the sets {x: $f(x) = h_{\lambda,\alpha_{f,\lambda}}(x)$ } and

{x: $f(x) = h_{\lambda,\beta_{f,\lambda}}(x)$ } consist of single points and

b) the set
$$E_{f,\lambda}$$
 of numbers c such that the set
{x: $f(x) = h_{\lambda,c}(x)$ } is not perfect is dense in
 $(\alpha_{f,\lambda}, \beta_{f,\lambda})$.

<u>4. Lemma.</u> There exists a residual set of functions f in C such that for every open rational interval $I \subseteq [0,1]$ the increases of functions in H of which the graphs support the graph of f in I from above at more than one point form a dense set in R and the increases of functions in H of which the graphs support the graph of f in I from below at more than one point form a dense set in R.

5. Lemma. The set of functions f ϵ C of which the graphs support at least one function of H at more than two points is of

the first category in C.

<u>6.</u> Lemma. The set of functions $f \in C$ for which there exists $\lambda \in R$ and there exist two different functions h_{λ,c_1} , $h_{\lambda,c_2} \in H$ whose graphs support the graph of f in two different points is of the first category in C.

A 2-parameter family H of continuous functions is <u>almost</u> <u>uniformly Lipschitz</u> if

 $\begin{array}{c} \forall \quad \forall \quad \exists \quad \forall \\ c \in R \quad \lambda \in R \quad L_{\lambda,c}^{\geq 0} \quad x_{1}, x_{2} \in [0,1] \\ \end{array} \right| \stackrel{h}{}_{\lambda,c}(x_{1}) \quad - \quad h_{\lambda,c}(x_{2}) \mid \leq L_{\lambda,c} \mid x_{1} - x_{2} \mid$

and, for every natural number n,

$$M_{n} = \sup \{L_{\lambda,c}: \lambda \in [-n,n], c \in [-n,n]\} < +\infty.$$

7. Lemma. Let H be a 2-parameter family of continuous functions which is almost uniformly Lipschitz.

Then there exists a residual set of functions $f \in C$ such that for every function $h \in H$ the function f - h is not monotone at any point $x \in [0,1]$.

<u>1. Theorem.</u> Let H be a 2-parameter family of continuous functions which is almost uniformly Lipschitz.

Then there exists a residual set of functions $f \in C$ for which there exists a countable dense set $\Lambda_f \in R$ and a set $E_{f,\lambda}$ countable and dense in $(\alpha, f, \lambda, \beta_{f,\lambda})$ such that 1^0 if $\lambda \in R \setminus \Lambda_f$, then

a) the sets {x: $f(x) = h_{\lambda,\alpha}(x)$ } and {x: $f(x) = h_{\lambda,\beta}(x)$ } consist of single points,

- b) for $c \in (\alpha_{f,\lambda}, \beta_{f,\lambda}) \setminus E_{f,\lambda}$ the set $\{x: f(x) = h_{\lambda,c}(x)\}$ is perfect and
- c) for $c \in E_{f,\lambda}$ the set {x: $f(x) = h_{\lambda,c}(x)$ } is the union of a non-empty perfect set and an isolated point, and 2^{0} if $\lambda \in \Lambda_{f}$, then
 - a) there exists an unique number $c_{f,\lambda} \in E_{f,\lambda} \cup \{\alpha_{f,\lambda}, \beta_{f,\lambda}\}$ such that if $c_{f,\lambda} \in E_{f,\lambda}$, then $\{x: f(x) = h_{\lambda}, c_{f,\lambda}(x)\}$ is the union of a non-empty perfect set and two isolated points, and if $c_{f,\lambda} = \alpha_{f,\lambda}$ or $c_{f,\lambda} = \beta_{f,\lambda}$, then the set $\{x: f(x) = h_{\lambda}, c_{f,\lambda}(x)\}$ consists of two different points,
 - b) for $c \in E_{f,\lambda} \{c_{f,\lambda}\}$ the set $\{x: f(x) = h_{\lambda,c}(x)\}$ is the union of a non-empty perfect set and an isolated point,
 - c) for $c \in \{\alpha_{f,\lambda}, \beta_{f,\lambda}\} \setminus \{c_{f,\lambda}\}$ the set $\{x: f(x) = h_{\lambda,c}(x)\}$ consists of a single point and
 - d) for $c \in (\alpha_{f,\lambda}, \beta_{f,\lambda}) \setminus E_{f,\lambda}$ the set {x: $f(x) = h_{\lambda,c}(x)$ } is perfect.

References

- [1] A.M. Bruckner and K.M. Garg <u>The level structure of a</u> residual set of continuous functions, Trans. Amer. Math. Soc. 232 (1977), p. 307-321.
- [2] A.M. Bruckner and K.M. Garg <u>The level structure of</u> <u>typical continuous functions</u>, Real Analysis Exchange Vol. 2 (1976) p. 35-39.
- [3] Z. Wojtowicz <u>0</u> typowych postaciach zbiorów {x: f(x) = h(x)} dla pewnych klas funkcji ciagłych, Słupskie Prace Matematyczno-Przyrodnicze (to appear).