Real Analinsis Enchange Vol 7 (:281-82)
Zygmunt Wójtowicz, Wyzsza Szkoła Pedagogiczna, Słupsk

THE STRUCTURE OF THE SETS $\{x: f(x)=h!x)\}$ FOR A TYOYCAL CONTINUOUS FUNCTION f AND FOR A CLASS DF LIPSCHITZ FUNCTIONS h.

1. Introduction.

Let R denote the space of real numbers and let C denote the space of continuous functions $f:[0,1] \rightarrow P$ equipped with the uniform norm $\|f\|=\sup \{|f(x)|: 0 \leq x \leq 1\}$.

A subset A of C is said to be residual in C if its comolement $C \backslash A$ is of the first category in C. If $f \in C$ and $\varepsilon>0$, the open ball $\{g \in C:\|g-f\|<\varepsilon\}$ of C is denoted as usual by $B(f, \varepsilon)$.

An interval $I \subset[0,1]$ is said to be a rational interval if both of its endpoints are rational, and I will be called an ooen interval if it is open relative to $[0,1]$.

Let f be a given function in C and let $\lambda \in R$. For every $c \in R$, the set $\{x: f(x)=\lambda x+c\}$ is called a level of f in the direction λ. By a level of f we mean, in general, a level of f in some direction $\lambda \in R$.

```
Let \(a_{f, \lambda}=\inf \{f(x)-\lambda x: 0 \leq x \leq 1\}\) and
    \(b_{f, \lambda}=\sup \{f(x)-\lambda x: 0 \leq x \leq 1\}\).
```

The levels of a function $f \in \mathcal{C}$ are said to be normal in a direction $\lambda \in R$ if there exists a countable dense set $E_{f, \lambda}$ in $\left(a_{f, \lambda}, \dot{o}_{f, \lambda}\right)$ such that the level $: x: f(x)=i x+c$; of f in the direction λ is
a) a perfect set when $c \notin E_{f, \lambda} \cup i a_{f, i} b_{f, \lambda}{ }^{\dagger}$,
b) a single point when $c=a_{f, \lambda}$ or $c=b_{f, \lambda}$, and
c) the union of a non-empty perfect set P with an isolated point $x \notin P$ when $c \in E_{f, \lambda}(P$ and x depending on f, λ and $c)$. It has been proved by A.M. Bruckner and K.M. Garg [1, Theorem 4.8] that there exists a residual set of functions f in C such that the levels of f are normal in all but a countable dense set of directions Λ_{f} in R, and in each direction $\lambda \in \Lambda_{f}$ the levels of fare normal except that there is a unique element c of $E_{f, \lambda} \cup\left\{a_{f, \lambda}, b_{f, \lambda}\right\}$ for which the level $\{x: f(x)=\lambda x+c\}$ contains two isolated points in place of one.

A family of functions $H \subset C$ is called a 2-parameter family if for every pair of numbers $x_{1}, x_{2} \in[0,1]\left(x_{1} \neq x_{2}\right)$ and for every pair of numbers $y_{1}, y_{2} \in R$ there exists a unique $h \in H$ such that $h\left(x_{1}\right)=y_{1}$ and $h\left(x_{2}\right)=y_{2}$.

In [2] Bruckner and Garg raised the following question. What conditions on H will guarantee that the analogue of the above theorem holds on replacing the family of straight lines $\{\lambda x+c\}$ by H ?

In the present paper we show that the above question has an affirmative answer if the 2-parameter family H is almost uniformly Lipschitz. For the proof of this fact we use the methods of Bruckner and Garg [1].

In §2 we state some properties of a 2-parameter family H and in §3 we show that the above question has an affirmative answer
(Theorem 1) when H is almost uniformly Lipschitz. The proofs are to appear in [3].
2. Properties of a 2-parameter family.

Let H denote a 2-parameter family of continuous functions.
A function $h \in H$ for which $c=h(0)$ and $\lambda-h(1)-h(0)$ will
be denoted by $h_{\lambda, c}$. The number λ is called the increase of the function $h_{\lambda, c}$. If $H_{\lambda}=\{h \in H: h(1)-h(0)=\lambda\}$, then it is clear that $H_{\lambda_{1}} \cap H_{\lambda_{2}}=\emptyset$ when $\lambda_{1} \neq \lambda_{2}$ and $\underset{\lambda \in R}{\bigcup} H_{\lambda}=H$.

1. Proposition. If $x_{0} \in[0,1], y_{0} \in R$ and the functions $h, h_{1} \in H, h \neq h_{1}$ are such that $h\left(x_{0}\right)=h_{1}\left(x_{0}\right)=y_{0}$, then either $h(x)<h_{1}(x)$ when $0 \leq x<x_{0}$ and $h(x)>h_{1}(x)$ when $x_{0}<x \leq 1$; or $h(x)>h_{1}(x)$ when $0 \leq x<x_{0}$ and $h(x)<h_{1}(x)$ when $x_{0}<x \leq 1$.
2. Proposition. For every triple of numbers $x_{0} \in[0,1]$ and $y_{0}, \lambda \in R$ there exists a unique function $h \in H_{\lambda}$ such that $h\left(x_{0}\right)=y_{0}$.
3. Proposition. $\operatorname{Lim}_{n \rightarrow \infty}\left\|h_{\lambda_{n}}, c_{n}-h_{\lambda, c}\right\|=0$ if and only if
$\lim _{n \rightarrow \infty} c_{n}=c$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda$.
4. Proposition. For every natural number n, let $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)$,
$\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in[0,1] \times R\left(x_{n}^{\prime} \neq x_{n}^{\prime \prime}\right.$ and $\left.x^{\prime} \neq x^{\prime \prime}\right)$ and
let $h_{\lambda_{n},{ }_{n}}, h_{\lambda, c} \in H$ be functions such that $h_{\lambda_{n}}, c_{n}\left(x_{n}^{\prime}\right)=y_{n}^{\prime}$,
$h_{\lambda_{n}, c_{n}}\left(x_{n}^{\prime \prime}\right)=y_{n}^{\prime \prime}, h_{\lambda, c}\left(x^{\prime}\right)=y^{\prime}$ and $h_{\lambda, c}\left(x^{\prime \prime}\right)=y^{\prime \prime}$.

$$
\text { Then if } \lim _{n \rightarrow \infty}\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right) \text { and } \lim _{n \rightarrow \infty}\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\left(x^{\prime \prime}, y^{\prime \prime}\right) \text {, }
$$

then $\lim _{n \rightarrow \infty}\left\|h_{\lambda_{n}}, c_{n}-h_{\lambda, c}\right\|=0$.
3. The structure of the set $\{x: f(x)=h(x)\}$ when $f \in C$ and h belongs to a 2 -parameter family of continuous functions that is almost uniformly Lipschitz.

Let $f \in C, h \in H$ and let I be a subinterval of $[0,1]$. The graph of h is said to support the graph of f in I from above(below.), if $h(x) \geq f(x)(h(x) \leq f(x))$ for every $x \in I$ and there exists a point x_{0} in I such that $h\left(x_{0}\right)=f\left(x_{0}\right)$. Further, if the point x_{0} is not unique, then the graph of h is said to support the graph of f in I from above (below) at more than one point. We will say that the graph of h supports the graph of f in I if the graph of h supports the graph of f from above or from below.

If I and J are two disjoint subintervals of $[0,1]$, the graph of h will be said to support the graph of f in I and J, if it supports the graph of f in I as well as the graph of f in J. Similarly for three or more mutually disjoint subintervals of $[0,1]$.

1. Lemma. For every function $f \in C$ there is at most a countable set of functions in H which support the graph of f in two (or more) disjoint open subintervals of $[0,1]$.

Let $f \in C$ and $i \in R$. We denote by

$$
\begin{aligned}
& \alpha_{f, \lambda}=\inf \left\{c \in R: \quad\left\{x: f(x)=h_{\lambda, c}(x)\right\} \neq \emptyset\right\} \\
& \beta_{f, \lambda}=\sup \left\{c \in R: \quad\left\{x: f(x)=h_{\lambda, c}(x)\right\} \neq \emptyset\right\}
\end{aligned}
$$

2. Lemma. For every function $f \in C$ and for every number $\lambda \in R$ the graph of the functions $h_{\lambda, \alpha_{f, \lambda}}$ and $h_{\lambda, \beta_{f, \lambda}}$ support the graph of f in [0,1] from above and from below respectively at least at one point.
3. Lemma. For every function $f \in C$ there is at most a countable set $\Lambda_{f} \in R$ such that for every $\lambda \in R \backslash \Lambda_{f}$
a) the sets $\left\{x: f(x)=h_{\lambda, \alpha_{f, \lambda}}(x)\right\}$ and

$$
\left\{x: f(x)=h_{\lambda, \beta_{f, \lambda}}(x)\right\} \text { consist of single points and }
$$

b) the set $E_{f, \lambda}$ of numbers c such that the set

$$
\begin{aligned}
& \left\{x: f(x)=h_{\lambda, c}(x)\right\} \text { is not perfect is dense in } \\
& \left(\alpha_{f, \lambda}, \beta_{f, \lambda}\right)
\end{aligned}
$$

4. Lemma. There exists a residual set of functions f in C such that for every open rational interval $I \subset[0,1]$ the increases of functions in H of which the graphs support the graph of f in I from above at more than one point form a dense set in R and the increases of functions in H of which the graphs support the graph of f in I from below at more than one point form a dense set in R.
5. Lemma. The set of functions $f \in C$ of which the graphs support at least one function of H at more than two points is of
the first category in C .
6. Lemma. The set of functions $f \in C$ for which there exists $\lambda \in R$ and there exist two different functions $h_{\lambda, c_{1}}, h_{\lambda, c_{2}} \in H$ whose graphs support the graph of f in two different points is of the first category in C.

A 2-parameter family H of continuous functions is almost uniformly Lipschitz if
$\underset{c \in R}{\forall} \underset{\lambda \in R}{\forall} \underset{\lambda, c}{]} \underset{L_{1}}{\forall} \quad \stackrel{\forall}{x_{1}}, x_{2} \in[0,1]^{\mid h} h_{\lambda, c}\left(x_{1}\right)-h_{\lambda, c}\left(x_{2}\right)\left|\leq L_{\lambda, c}\right| x_{1}-x_{2} \mid$
and, for every natural number n,
$M_{n}=\sup \left\{L_{\lambda, c}: \lambda \varepsilon[-n, n], c \in[-n, n]\right\}<+\infty$.
7. Lemma. Let H be a 2-parameter family of continuous functions which is almost uniformly Lipschitz.

Then there exists a residual set of functions $f \in \mathcal{C}$ such that for every function $h \in H$ the function $f-h$ is not monotone at any point $x \in[0,1]$.

1. Theorem. Let H be a 2-parameter family of continuous functions which is almost uniformly Lipschitz.

Then there exists a residual set of functions $f \in C$ for which there exists a countable dense set $\Lambda_{f} \in R$ and a set $E_{f, \lambda}$ countable and dense in ($\alpha, f, \lambda, \beta_{f, \lambda}$) such that 1^{0} if $\lambda \in R \backslash \Lambda_{f}$, then
a) the sets $\left\{x: f(x)=h_{\lambda,{ }_{f, \lambda}}(x)\right\}$ and $\left\{x: f(x)=h_{\lambda, 3_{f, \lambda}}(x)\right\}$
consist of single points,
b) for $c \in\left(a_{f, \lambda}, \beta_{f, \lambda}\right) \backslash E_{f, \lambda}$ the set $\left(x: f(x)=h_{\lambda, c}(x)\right.$; is perfect and
c) for $c \in E_{f, \lambda}$ the set $\left\{x: f(x)=h_{\lambda, c}(x)\right\}$ is the union of a non-empty perfect set and an isolated point, and 2^{0} if $\lambda \varepsilon \Lambda_{f}$, then
a) there exists an unique number $c_{f, \lambda} E E_{f, i} U\left\{\alpha_{f, i}, \beta_{f, \lambda}\right\}$ such that if $c_{f, \lambda} \in E_{f, \lambda}$, then $\left\{x: f(x)=h_{\lambda, c_{f, \lambda}}(x)\right\}$ is the union of a non-empty perfect set and two isolated points, and if $c_{f, \lambda}=\alpha_{f, \lambda}$ or $c_{f, \lambda}=\beta_{f, \lambda}$, then the set $\left\{x: f(x)=h_{\lambda, c_{f, \lambda}}(x)\right\}$ consists of two different points,
b) for $c \in E_{f, \lambda} \backslash\left\{c_{f, \lambda}\right\}$ the set $\left\{x: f(x)=h_{\lambda, c}(x)\right\}$ is the union of a non-empty perfect set and an isolated point,
c) for $c \in\left\{\alpha_{f, \lambda}, \beta_{f, \lambda}\right\} \backslash\left\{c_{f, \lambda}\right\}$ the $\operatorname{set}\left\{x: f(x)=h_{\lambda, c}(x)\right\}$ consists of a single point and
d) for $c \in\left(\alpha_{f, \lambda}, \beta_{f, \lambda}\right) \backslash E_{f, \lambda}$ the set $\left\{x: f(x)=h_{\lambda, c}(x)\right\}$ is perfect.

References

[1] A.M. Bruckner and K.M. Garg - The level structure of a $\frac{\text { residual }}{}$ set of continuous functions, Trans. Amer. Math. $\overline{\text { Soc. } 232}(1977)$, p. 307-321.
[2] A.M. Bruckner and K.M. Garg - The level structure of typical continuous functions, Real Analysis Exchange Vol. 2 (1976) p. 35-39.
[3] Z. Wojtowicz - 0 tyoowych postaciach zbiorów $\{x: f(x)=h(x)\}$ dla pewnych klas funkcji ciagłych, Słupskie Prace Matematyczno-Przyrodnicze (to appear).

