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 A Note on Denjoy Integrable Functions

 It is well known that if f (x) is Denjoy integrable in the

 wide sense (integrable P) on [0,1], then every closed set contains

 a portion on which f(x) is Lebesgue integrable. Equivalently,

 [0,11 is the countable union of closed sets E such that f I E n 'n
 a

 is Lebesgue integrable. Thus, if f(x) is a non-negative measur-

 able function and f(x) = |f(x)| where f(x) is V integrable on
 A

 [0,1] then [0,1] = UEn, E^ closed and f(x)|En is Lebesgue
 integrable. The following theorem shows that these conditions are

 necessary and sufficient. In fact, V integrable can be replaced

 by V* integrable. The notation used is given in [1] .

 Theorem: If f(x) is a non-negative function defined on [0,1]
 a

 and if [0,1] = 0, E with each E closed such that f(x)|E„

 is Lebesgue integrable, then there is a function g(x) which takes

 on the values -1 and 1 so that f(x) ; g(x) is P* integrable.

 (Thus f(x) = |f(x) g(x)| .)

 The proof of this theorem requires two simple lemmas.

 Lemma 1: If F (x) = ZFn (x) then for any interval I ,

 0 (F;I) < Z 0 (F^-,1), where 0 (F;I) is the oscillation of
 F on I = sup F(x) - inf F(x) .

 xel xel

 Lemma ly Let E denote a bounded closed set, I a closed inter-

 val containing E and the sequence of intervals contiguous
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 to E in I . Then for any function F which is finite on I ,
 o o

 Ö(F;Io) < V (F;E) + 2 2 0(F;Jk)
 k

 where V (F;E) is the variation of F on E. Lemma 1 is immedi-

 ate and Lemma 2 occurs in [1] p. 231.
 A

 Proof of the Theorem: Suppose f is a non negative measurable

 function. Suppose [0,1] = UEn with each En closed and that for

 each natural number n, f|En is Lebesgue integrable. Without loss

 of generality assume that E-. = {0,1}. Let X = (} E. and
 1

 = En+j'Xn . Denote the intervals contiguous to each set Xn
 by k = 0 , 1 , ... and let = A D . Fix n and

 k and let a^ = Jc ^ (x) f(x) dx. Choose a natural number
 nk -n-k-1

 m so large that a^/2m < 2 . There is a partition
 xn,x, , . . . x , . . . x~ of I T so that 0 1 , . . . m , . . . 2m nk T

 /c J a nk . n [x. L l-l , x.] iJ W ' " a„i/2m • J nk . L l-l , iJ

 Let g^ (x) - /(-l) if x € ^i-i' xi^ ^ ^nk
 (^0 otherwise .

 Since (0,1) =nUk A^ and the 3.T6 pairwise disjoint

 gnW = 2 §nk^ and gW = 2 gn (x)
 k n

 are well defined on (0,1) . For completeness, let g(0) = g(l) = 1.

 Now let

 fn(x) = f(x) • gn(x)
 f(x) = f(x) • g(x)

 Fn(x) - (* fn Ct) dt
 Jo

 F(x) = Ž F (x)
 n=l
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 Sincê g^x) = 0 for each x / An and thus for each x f.

 fn(x) is Lebesgue integrable and thus Fr is well defined. Note
 that F (x) - 0 at each x ^ x . Since
 n n

 l^n00 I - 2 n , F(x) is well defined and since each Fn(x) is
 continuous, F(x) is a continuous function. Since

 N N
 F (x) I p = 2 F n (x), and f (x) L = 2 f n (x), it follows that 1 p 1 n ^ 1 n

 F1 ap (x) = f(x) almost everywhere in En and since [0,1] = 0En,

 F' ap (x) = f(x) a. e.

 Thus, in order to show that F(x) is the V* integral of f(x),

 it suffices to show that F(x) is ACG*. For this, it will suffice

 to show that on each set E , F fx) is AC*. Let a natural number
 n

 -M ,
 n and € > 0 be given. Choose M > n so that 2 < e/3. , Since
 M
 2 F (x) is absolutely continuous, it is AC* on E and there
 j m n

 exists 6 > 0 so that if 1^ is any sequence of non-overlapping

 intervals with endpoints in En and z|l^.| < 5,

 Z 0 ( ï F (x) ; I.) < e/3 . Let G (x) = F(x) - 2 F (x) » 2 F (x) .
 j 1 m J T M»-l

 Then if is any sequence of intervals with endpoints in En,
 Since V (F v ; E ) = 0 when m > n, ' it follows that v m' n '

 2 0( G ; I.)<J 2 0(1= ; I.)
 j M 3 j m*1 m 3
 <2 2 (V (F ; E ) + 2 2 0(F ; I . fi I.) )
 j M»1 mn y. mmkj .

 <22 2 2 0(F ; I , il I.)
 i *.i k m A , y
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 <2 Ž Z'" í 2 • 2"M < Ķ
 M+l *

 It follows that for this 5 and any sequence of intervals which

 are pairwise nonoverlapping with endpoints in En that

 2 0(F, Ij) < e . Thus F is AC* on each En> F is ACG*,
 and f is V* integrable with F(x) = P* ( f(t) dt .

 Jo

 Note. Both g^ ^(1) and g^ '-l) are F sets. This
 is because they are a finite union of sets of the form

 (En+i ' xn) n [xi ;L, X.)

 where both En+^ and are closed. Thus g(x) = Z ^ g^Cx) ,
 which takes on only the values 1 and -1, satisfies g *(1) and

 g "'"(-l) are F^ sets. Consequently g belongs to Baire class 1.
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