James Foran, Department of Mathematics, University of Missouri--Kansas City, Kansas City, Missouri 64110

A Note on Denjoy Integrable Functions

It is well known that if f(x) is Denjoy integrable in the wide sense (integrable \mathcal{D}) on [0,1], then every closed set contains a portion on which f(x) is Lebesgue integrable. Equivalently, [0,1] is the countable union of closed sets E_n such that $f|E_n$ is Lebesgue integrable. Thus, if $\hat{f}(x)$ is a non-negative measurable function and $\hat{f}(x) = |f(x)|$ where f(x) is \mathcal{D} integrable on [0,1] then $[0,1] = UE_n$, E_n closed and $\hat{f}(x)|E_n$ is Lebesgue integrable. The following theorem shows that these conditions are necessary and sufficient. In fact, \mathcal{D} integrable can be replaced by \mathcal{D}^* integrable. The notation used is given in [1]. Theorem: If $\hat{f}(x)$ is a non-negative function defined on [0,1] and if $[0,1] = \prod_{n=1}^{\infty} E_n$ with each E_n closed such that $\hat{f}(x)|E_n$ is Lebesgue integrable, then there is a function g(x) which takes on the values -1 and 1 so that $\hat{f}(x) : g(x)$ is \mathcal{D}^* integrable. (Thus $\hat{f}(x) = |f(x)|g(x)|$.)

The proof of this theorem requires two simple lemmas.

Lemma 1: If $F(x) = \Sigma F_n(x)$ then for any interval I, $0 (F;I) \le \Sigma 0 (F_n;I)$, where 0 (F;I) is the oscillation of F on $I = \sup_{x \in I} F(x) - \inf_{x \in I} F(x)$.

to E in I_o . Then for any function F which is finite on I_o ,

$$\mathcal{O}(F;I_o) \leq V(F;E) + 2\sum_{k} \mathcal{O}(F;J_k)$$

where V (F;E) is the variation of F on E. Lemma 1 is immediate and Lemma 2 occurs in [1] p. 231.

<u>Proof of the Theorem:</u> Suppose $\hat{\mathbf{f}}$ is a non negative measurable function. Suppose $[0,1]=UE_n$ with each E_n closed and that for each natural number n, $\hat{\mathbf{f}}|E_n$ is Lebesgue integrable. Without loss of generality assume that $E_1=\{0,1\}$. Let $X_n=\bigcup_{i=1}^n E_i$ and $A_n=E_{n+1}\setminus X_n$. Denote the intervals contiguous to each set X_n by I_{nk} $k=0,1,\ldots$ and let $A_{nk}=A_n\cap I_{nk}$. Fix n and k and let $a_{nk}=\int_{nk} (x) \hat{\mathbf{f}}(x) \, dx$. Choose a natural number m so large that $a_{nk}/2m < 2^{-n-k-1}$. There is a partition $x_0,x_1,\ldots,x_m,\ldots,x_{2m}$ of I_{nk} so that

$$\int_{R_{nk}}^{C_{A_{nk}}} \int_{R_{i-1}}^{C_{A_{nk}}} \left[x_{i-1} \times_{i}^{C_{i}} \right] (x) \cdot \hat{f}(x) dx = a_{nk} / 2m.$$
Let $g_{nk}(x) = \begin{cases} (-1)^{i} \text{ if } x \in [x_{i-1}, x_{i}) \cap A_{nk} \\ 0 \text{ otherwise.} \end{cases}$

Since $(0,1) = \bigcup_{n,k} A_{nk}$ and the A_{nk} are pairwise disjoint $g_n(x) = \sum_{k} g_{nk}(x)$ and $g(x) = \sum_{n} g_n(x)$

are well defined on (0,1) . For completeness, let g(0) = g(1) = 1. Now let

$$f_{n}(x) = \hat{f}(x) \cdot g_{n}(x)$$

$$f(x) = \hat{f}(x) \cdot g(x)$$

$$F_{n}(x) = \int_{0}^{x} f_{n}(t) dt$$

$$F(x) = \sum_{n=1}^{\infty} F_{n}(x)$$

Since $g_n(x) = 0$ for each $x \notin A_n$ and thus for each $x \notin X_n$, $f_n(x)$ is Lebesgue integrable and thus F_n is well defined. Note that $F_n(x) = 0$ at each $x \in X_n$. Since

 $|F_n(x)| \le 2^{-n}$, F(x) is well defined and since each $F_n(x)$ is continuous, F(x) is a continuous function. Since

 $F(x)|_{E_{N}} = \sum_{1}^{N} F_{n}(x)$, and $f(x)|_{E_{N}} = \sum_{1}^{N} f_{n}(x)$, it follows that

F' ap (x) = f(x) almost everywhere in E_n and since $[0,1] = UE_n$,
F' ap (x) = f(x) a.e.

Thus, in order to show that F(x) is the \mathcal{D}^* integral of f(x), it suffices to show that F(x) is ACG*. For this, it will suffice to show that on each set E_n , F(x) is AC*. Let a natural number $ext{n}$ and $ext{n} > 0$ be given. Choose $ext{M} > n$ so that $ext{2}^{-M} < ext{3}$. Since $ext{M} > F_m(x)$ is absolutely continuous, it is AC* on $ext{E}_n$ and there $ext{1}$ exists $ext{0} > 0$ so that if $ext{I}_j$ is any sequence of non-overlapping intervals with endpoints in $ext{E}_n$ and $ext{2} | ext{I}_j | < \delta$,

$$\Sigma$$
 0 (Σ $F_m(x)$; I_j) < $\varepsilon/3$. Let $G(x) = F(x) - \Sigma F_m(x) = \Sigma F_m(x)$.

Then if I_j is any sequence of intervals with endpoints in E_n , Since $V(F_m; E_n) = 0$ when m > n, it follows that

$$\begin{array}{l} \Sigma \quad O(G_{M}; \ I_{j}) \leq \Sigma \quad \widetilde{\Sigma} \quad O(F_{m}; \ I_{j}) \\ j \quad M+1 \end{array}$$

$$\leq \Sigma \quad \widetilde{\Sigma} \quad (V \ (F_{m}; \ E_{n}) + 2 \sum_{k} O(F_{m}; \ I_{mk} \cap I_{j}))$$

$$\leq 2 \sum_{j} \quad \widetilde{\Sigma} \quad \Sigma \quad O(F_{m}; \ I_{mk} \cap I_{j})$$

$$= 2 \sum_{j} \quad M+1 \quad k \quad (V \ (F_{m}; \ I_{mk} \cap I_{j}))$$

$$\leq 2 \sum_{M+1}^{\infty} 2^{-m} \leq 2 \cdot 2^{-M} \leq \frac{2\varepsilon}{3}$$

It follows that for this δ and any sequence of intervals which are pairwise nonoverlapping with endpoints in E_n that Σ $\mathcal{O}(F, I_j) < \varepsilon$. Thus F is AC* on each E_n , F is ACG*, and f is \mathcal{D}^* integrable with $F(x) = \mathcal{D}^* \int_0^x f(t) \, dt$. Note. Both $g_{nk}^{-1}(1)$ and $g_{nk}^{-1}(-1)$ are F_{σ} sets. This is because they are a finite union of sets of the form

$$(E_{n+1} \setminus X_n) \cap [x_{i-1}, x_i)$$

where both E_{n+1} and X_n are closed. Thus $g(x) = \sum\limits_{n} \sum\limits_{k} g_{nk}(x)$, which takes on only the values 1 and -1, satisfies $g^{-1}(1)$ and $g^{-1}(-1)$ are F_{σ} sets. Consequently g belongs to Baire class 1.

References

1. S. Saks, Theory of the Integral, Dover Publications, New York.

Received February 11, 1982