M. Laczkovich, Department I of Analysis, Eötvös Loránd University, Budapest, Muzeum krt. 6-8, H-1088, Hungary

Derivations on Differentiable Functions

Let \mathbb{R}^{I} denote the class of real valued functions defined on the non-degenerate interval $I \subset \mathbb{R}$ and let $\mathcal{I} \subset \mathbb{R}^{I}$ be an algebra over the reals. A map

$$
\mathrm{d}: \mathcal{F} \rightarrow \mathbb{R}^{I}
$$

is said to be a derivation if d is linear and

$$
\begin{equation*}
d(f g)=f \cdot d g+g \cdot d f \tag{1}
\end{equation*}
$$

holds for every $f, g \in \mathcal{F}$. Suppose that the identity function $\sigma(x)=x \quad(x \in I)$ belongs to \mathcal{F} and let $h=d \sigma$ Then \mathcal{F} contains the polynomials and it is easy to see that $d p=h \cdot p^{\prime}$ holds for every polynomials p. It was proved by Yasuo Watatani that df $=\mathrm{h} \cdot \mathrm{f}^{\prime}$ holds also for every $f \in C^{\infty}(I)$ supposing that $C^{\infty}(I) \subset \mathcal{F} \quad[2]$. In this paper we describe the derivations of the class D of differentiable functions defined on I. As we shall see, $d f=h \cdot f '$ is no longer true for every derivation on \mathcal{D}. However, if we suppose that $d f$ is Baire 1 for every $f \in \mathbb{X}$ then $(d f)(x)=h(x) \cdot f^{\prime}(x)$ holds true for each $f \in \mathbb{D}$ apart from a fixed scattered subset of I.

Theorem l. A linear map

$$
d: D \rightarrow \mathbb{R}^{I}
$$

is a derivation if and only if (df)(a) $=0$ holds whenever $f \in D, a \in I$ and
(2)

$$
\lim _{x \rightarrow a} \frac{f(x)}{(x-a)^{2}}=0
$$

Proof. If (2) holds then the function g defined by

$$
g(x)= \begin{cases}\frac{f(x)}{x-a}, & x \in I, \\ x \neq a \\ 0, & x=a\end{cases}
$$

is differentiable. Thus, if d is a derivation, we have

$$
d f=d(g \cdot(\sigma-a))=d g \cdot(\sigma-a)+g \cdot h
$$

from which (df)(a) $=0$.
Now suppose that $d: D \rightarrow \mathbb{R}^{I}$ is a linear map satisfying the condition of Theorem l. Let $f, g \in D$ and $a \in I$ be arbitrary and put

$$
s(x)=(f(x)-f(a))(g(x)-g(a))-f^{\prime}(a) \cdot g^{\prime}(a) \cdot(x-a)^{2} \quad(x \in:
$$

Then $s \in \mathbb{D}$ and $\lim _{x \rightarrow a} \frac{s(x)}{(x-a)^{2}}=0$ holds and hence we have

$$
(d s)(a)=0 .
$$

Hence, by the linearity of d,

$$
\begin{aligned}
d(f g)(a) & =d(s+f(a)(g-g(a))+g(a)(f-f(a))+ \\
& \left.+f(a) g(a)+f^{\prime}(a) g^{\prime}(a)(\sigma-a)^{2}\right)(a)= \\
& =(d s)(a)+f(a)(d g)(a)+g(a)(d f)(a)+ \\
& +2 f^{\prime}(a) \cdot g^{\prime}(a) \cdot h(a)(a-a)=f(a) \cdot(d g)(a)+ \\
& +g(a) \cdot(d f)(a) .
\end{aligned}
$$

Since a is arbitrary, this implies (1) and d is a derivation.

The function f is said to have the second Peano derivative at the point a if the finite limit

$$
\begin{equation*}
\lim _{x \rightarrow a}\left(f(x)-f(a)-f^{\prime}(a)(x-a)\right) /(x-a)^{2} \tag{3}
\end{equation*}
$$

exists. We shall denote by $P_{2}(a)$ the class of functions $f \in \mathbb{D}$ having the second Peano derivative at $a \in I$. Then $P_{2}(a)$ is a linear subspace of D and $P_{2}(a) \subsetneq D$ since the function $f(x)=(x-a)^{2} \cdot \sin \frac{1}{x-a}, f(a)=0$ belongs to $D-P_{2}(a)$.

Corollary. Let $d: D \rightarrow \mathbf{R}^{I}$ be an arbitrary map and put $h=d \sigma$. d is a derivation if and only if for each $a \in I$ there exists a linear functional $\lambda_{a}: D \rightarrow \mathbb{R}$ such that

$$
P_{2}(a) \subset \operatorname{Ker} \lambda_{a}
$$

and

$$
(d f)(a)=h(a) \cdot f^{\prime}(a)+\lambda_{a} f
$$

holds for every $f \in D$ and $a \in I$.

Proof. Suppose that d satisfies the condition of the Corollary; then d is linear. Let $f \in \mathbb{D}, a \in I$ and suppose (2). Then

$$
f(a)=f^{\prime}(a)=0 \quad \text { and } \quad f \in \mathcal{P}_{2}(a)
$$

from which

$$
(d f)(a)=h(a) \cdot f^{\prime}(a)+\lambda_{a} f=0 .
$$

Thus, by Theorem l, d is a derivation.
On the other hand, if d is a derivation then let
λ_{a} be defined by

$$
\lambda_{a} f=(d f)(a)-h(a) \cdot f^{\prime}(a) \quad(f \in D)
$$

Then λ_{a} is linear on D and it easily follows from Theorem 1 that λ_{a} vanishes on $P_{2}(a)$. In fact, let $f \in P_{2}(a)$ and let c be the value of the limit under (3). Let $g=f-f(a)-f^{\prime}(a)(\sigma-a)-c(\sigma-a)^{2}$, then $\lim _{x \rightarrow a} \frac{g(x)}{(x-a)^{2}}=0$ and hence

$$
\begin{aligned}
\lambda_{a} f & =\lambda_{a} g+\lambda_{a}\left(f(a)+f^{\prime}(a)(\sigma-a)+c(\sigma-a)^{2}\right)= \\
& =(d g)(a)-h(a) \cdot g^{\prime}(a)+f^{\prime}(a) \cdot h(a)-h(a) \cdot f^{\prime}(a)=0
\end{aligned}
$$

Now we turn to formulate our main result. A set $H \subset \mathbb{R}$ is said to be scattered if H does not contain any non-
empty subset which is dense in itself. It is obvious that every scattered set is nowhere dense in \mathbb{R} and it is also well-known that a scattered set must be countable ([1], §18, V., p. 141).

Theorem 2. Let $d: D \rightarrow \mathbb{R}^{I}$ a derivation and suppose that $d f$ is Baire 1 for every $f \in \mathbb{D}$. Then there exists a scattered set $H \subset I$ such that

$$
(d f)(x)=h(x) \cdot f^{\prime}(x)
$$

holds for every $f \in \mathcal{D}$ and $x \in I-H$. $(h=d \sigma$, where σ denotes the identity function on I .)

Lemma. Let $F:[0, \infty) \rightarrow \mathbb{R}$ be continuous, increasing and satisfying

$$
\begin{equation*}
F(0)=F_{+}^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

Let $g \in D, a \in i n t I$ be given and suppose that

$$
|g(x)| \leq F(|x-a|)
$$

holds in a neighbourhood of a. Suppose further that a is an accumulation point of a given set $A C I$.

Then for every $\varepsilon>0$ there are functions $g_{1}, g_{2} \in \mathbb{D}$
and closed sets $K_{1}, K_{2} \subset \mathbb{R}$ such that
(5) $\quad g_{1}(x)+g_{2}(x)=g(x)$ in a neighbourhood of a ;
(6) $\quad\left|g_{i}(x)\right| \leq \varepsilon$ for every $x \in I$ and $i=1,2$;
(7) $\left|g_{i}(x)\right| \leq 4 \cdot F\left(\operatorname{dist}\left(x, K_{i}\right)\right)$ for every $x \in I$ and $i=1,2$
(8) $\quad \mathbb{R}-[a-\varepsilon, a+\varepsilon] \subset K_{i} \quad(i=1,2)$
and
(9) a is an accumulation point of $A \cap i n t K_{i} \quad(i=1,2)$.

Proof. We can suppose $a=0$ and that O is a right hand side accumulation point of A. If $F(x)=0$ for some $x>0$ then $g(x)=0$ in a neighbourhood of 0 and we can take $g_{1}=g_{2}=0$ and $K_{1}=K_{2}=\mathbb{R}$. Thus we can suppose $F(x)>0 \quad(x>0)$.

First we fix $\delta \in(0, \varepsilon)$ such that $[-\delta, \delta] \subset I$ and
(10) $\quad \lg (x) \left\lvert\, \leq F(|x|)<\frac{\varepsilon}{4} \quad\right.$ for every $|x| \leq \delta$.

Let $b_{o}=\delta$. Suppose that $k \geq 0$ and the point $0<b_{k} \leq \delta$ has been defined. Since F is positive in $\left[\frac{1}{2} b_{k}, \delta\right]$ and uniformly continuous in $[0, \delta]$, we can choose $0<\mathrm{c}_{\mathrm{k}}<\frac{1}{2} \mathrm{~b}_{\mathrm{k}}$ such that

$$
\begin{equation*}
F(x)<2 \cdot F\left(x-c_{k}\right) \quad \text { for every } \quad x \in\left[\frac{1}{2} b_{k}, \delta\right] . \tag{11}
\end{equation*}
$$

Then we choose $0<b_{k+1}<c_{k}$ with

$$
\begin{equation*}
A \cap\left(b_{k+1}, c_{k}\right) \neq \varnothing . \tag{12}
\end{equation*}
$$

Thus, by induction, we have defined the sequences $\left\{b_{k}\right\},\left\{c_{k}\right\}$ such that

$$
\delta=b_{0}>c_{0}>b_{1}>c_{1}>\ldots>0
$$

and

$$
\lim _{k \rightarrow \infty} b_{k}=\lim _{k \rightarrow \infty} c_{k}=0 .
$$

Let $k \geq 0$ be fixed. By (10) and (11) we have

$$
\lg \left(\frac{1}{2} b_{k}\right) \left\lvert\, \leq F\left(\frac{1}{2} b_{k}\right)<2 \cdot F\left(\frac{1}{2} b_{k}-c_{k}\right) .\right.
$$

Since F is continuous and positive for $x>0$, we can construct a differentiable function $s_{k}:\left(c_{k}, \frac{1}{2} b_{k}\right] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left|s_{k}(x)\right|<2 \cdot F\left(x-c_{k}\right) \quad\left(c_{k}<x \leq \frac{1}{2} b_{k}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
& s_{k}\left(\frac{1}{2} b_{k}\right)=g\left(\frac{1}{2} b_{k}\right), \\
& s_{k}^{\prime}\left(\frac{1}{2} b_{k}\right)=g^{\prime}\left(\frac{1}{2} b_{k}\right) . \tag{14}
\end{align*}
$$

Now we define the functions g_{1}, g_{2} as follows. For x negative we put $g_{1}(x)=g_{2}(x)=u(x)$, where

$$
u(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq-\varepsilon \text { and } x \in I, \\
\frac{1}{2} g(x) & \text { if } & -\frac{1}{2} \delta<x<0,
\end{array}\right.
$$

and in $\left(-\varepsilon,-\frac{1}{2} \delta\right] \cap I$ we define u such that it is differentable, $u\left(-\frac{1}{2} \delta\right)=\frac{1}{2} g\left(-\frac{1}{2} \delta\right), u^{\prime}\left(-\frac{1}{2} \delta\right)=\frac{1}{2} g^{\prime}\left(-\frac{1}{2} \delta\right)$ and satisfies the inequality

$$
\begin{aligned}
& |u(x)| \leq \min (\varepsilon, F(x+\varepsilon), F(-x)) \\
& \quad\left(x \in\left(-\varepsilon,-\frac{1}{2} \delta\right] \cap I\right) .
\end{aligned}
$$

This is possible since

$$
\left|\frac{1}{2} g\left(-\frac{1}{2} \delta\right)\right| \leq \frac{1}{2} F\left(\frac{1}{2} \delta\right)<F\left(\frac{1}{2} \delta\right)<F\left(-\frac{1}{2} \delta+\varepsilon\right) .
$$

For x non-negative we define

$$
g_{1}(x)=\left\{\begin{array}{lll}
s_{2 k+1}(x) & \text { if } & c_{2 k+1}<x \leq \frac{1}{2} b_{2 k+1} \\
g(x) & \text { if } & \frac{1}{2} b_{2 k+1}<x \leq c_{2 k} \\
g(x)-s_{2 k}(x) & \text { if } & c_{2 k}<x \leq \frac{1}{2} b_{2 k} \\
(k=0,1, & \ldots)
\end{array}\right.
$$

and

$$
g_{1}(x)=0 \text { otherwise } ;
$$

$$
g_{2}(x)=\left\{\begin{array}{lll}
s_{2 k}(x) & \text { if } & c_{2 k}<x \leq \frac{1}{2} b_{2 k}, \\
g(x) & \text { if } & \frac{1}{2} b_{2 k}<x \leq c_{2 k-1} \\
g(x)-s_{2 k-1}(x) & \text { if } & c_{2 k-1}<x \leq \frac{1}{2} b_{2 k-1}
\end{array},\right.
$$

and $g_{2}(x)=0$ otherwise. Finally we put

$$
K_{1}=(-\infty,-\varepsilon] \cup\{0\} \cup \bigcup_{k=1}^{\infty}\left[b_{2 k}, c_{2 k-1}\right] \cup\left[b_{0}, \infty\right)
$$

and

$$
K_{2}=(-\infty,-\varepsilon] \cup\{0\} \cup \bigcup_{k=1}^{\infty}\left[b_{2 k+1}, c_{2 k}\right] \cup\left[b_{0}, \infty\right)
$$

Let $k \geq 0$ be fixed. g_{1} is obviously differentiable at every point of $\left(c_{2 k+1}, b_{2 k}\right)-\left\{\frac{1}{2} b_{2 k+1}, c_{2 k}, \frac{1}{2} b_{2 k}\right\}$. However
(14) implies that g_{1} is differentiable also at the points $\frac{1}{2} b_{2 k+1}$ and $\frac{1}{2} b_{2 k}$. By (4) and (13) it follows that

$$
\lim _{x \rightarrow c_{2 k}+o} \frac{s_{2 k}(x)}{x-c_{2 k}}=0
$$

and hence g_{1} is differentiable at $c_{2 k}$, too. Thus we have proved that g_{1} is differentiable at the points of $\mathrm{I}-\mathrm{K}_{1}$.

$$
\text { If } x \in\left(c_{2 k+1}, \frac{1}{2} b_{2 k}\right) \text { then } \operatorname{dist}\left(x, k_{1}\right)=x-c_{2 k+1} \text {. }
$$

Hence, for $c_{2 k+1}<x \leq c_{2 k}$ we have

$$
\left|g_{1}(x)\right| \leq 2 \cdot F\left(x-c_{2 k+1}\right)=2 \cdot F\left(\text { dist }\left(x, K_{1}\right)\right)
$$

by (13), (10) and (11). Similarly, if $c_{2 k}<x \leq \frac{1}{2} b_{2 k}$ then

$$
\begin{aligned}
\left|g_{1}(x)\right| & \leq|g(x)|+\left|s_{2 k}(x)\right| \leq F(x)+2 \cdot F\left(x-c_{2 k}\right) \leq \\
& \leq 2 \cdot F\left(x-c_{2 k+1}\right)+2 \cdot F\left(x-c_{2 k+1}\right)=4 \cdot F\left(\operatorname{dist}\left(x, K_{1}\right)\right)
\end{aligned}
$$

This proves that $\left|g_{1}(x)\right| \leq 4 \cdot F\left(\operatorname{dist}\left(x, K_{1}\right)\right)$ holds in I . This estimation, together with (4) implies $g_{1}^{\prime}(x)=0$ for every $x \in I \cap K_{1}$ and hence $g_{1} \in \mathbb{D}$. Using (10) we obtain $\left|g_{1}\right|<\varepsilon$, too. These assertions can be similarly proved for g_{2} and K_{2}. Since $g_{1}(x)+g_{2}(x)=g(x)$ holds in $\left[-\frac{1}{2} \delta, b_{1}\right]$ and (9) follows immediately from (12) the proof of the Lemma is complete. \square

Proof of Theorem 2. Let H denote the set of those points $a \in I$ for which there exists $f_{a} \in \mathbb{D}$ such that

$$
\left(d f_{a}\right)(a) \neq h(a) \cdot f_{a}^{\prime}(a)
$$

We have to prove that H is scattered. Suppose this is not true and let $A \subset H$ be non-empty and dense in itself. We can choose A to be countable; otherwise we take a countable and dense subset of A . Making use of this assumption we shall construct a function $\varphi \in \mathbb{D}$ such that d φ is not Baire 1.

For $a \in A$ we put

$$
g_{a}=f_{a}-f_{a}(a)-f_{a}^{\prime}(a)(\sigma-a),
$$

then $g_{a}(a)=g_{a}^{\prime}(a)=0$ and

$$
\left(d g_{a}\right)(a)=\left(d f_{a}\right)(a)-f_{a}^{\prime}(a) \cdot h(a) \neq 0 .
$$

Multiplying by a suitable constant we can suppose that

$$
\begin{equation*}
\left(d g_{a}\right)(a) \geq 2 \quad(a \in A) \tag{15}
\end{equation*}
$$

Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ and define

$$
F_{n}(x)=\sup _{\substack{|y| \leq x \\ a_{n}+y \in I}}\left|g_{a_{n}}\left(a_{n}+y\right)\right| \quad(x>0, n=1,2, \ldots)
$$

Then F_{n} is continuous and increasing on $[0, \infty)$. In addition it follows from $g_{a_{n}}\left(a_{n}\right)=g_{a_{n}}^{\prime}\left(a_{n}\right)=0$ that

$$
\lim _{x \rightarrow+0} \frac{F_{n}(x)}{x}=0 \quad(n=1,2, \ldots)
$$

Let $\delta_{n}>0$ be chosen according to

$$
F_{n}(x)<\frac{1}{2^{n}}, \quad \frac{F_{n}(x)}{x}<\frac{1}{2^{n}} \quad\left(0<x \leq \delta_{n}\right)
$$

and put

$$
\begin{equation*}
F(x) \quad \operatorname{def}^{\underline{n}} \sum_{n=1}^{\infty} \min \left(F_{n}(x), F_{n}\left(\delta_{n}\right)\right) \quad(x \geq 0) \tag{16}
\end{equation*}
$$

Then F is continuous and increasing on $[0, \infty)$;

$$
\begin{equation*}
F(0)=F_{+}^{\prime}(0)=0 \tag{17}
\end{equation*}
$$

and

$$
\lg _{a_{n}}(x) \mid \leq F\left(\left|x-a_{n}\right|\right) \quad\left(\left|x-a_{n}\right|<\delta_{n}\right)
$$

for every $n=1,2, \ldots$.
Let $p(n)$ denote the greatest integer k such that $3^{k} \ln$. Then $0 \leq p(n)<n$ for every $n=1,2, \ldots$ and for each non-negative integer k there are infinitely many even as well as odd natural numbers n with $p(n)=k$.

Now we turn to the construction of the function p.
Let $t_{0} \in A \cap$ int I be arbitrary and put $\varphi_{0} \equiv 0$ and $P_{0}=\mathbb{R}$.
Let $n>0$ and suppose that the points $t_{0}, t_{1}, \ldots, t_{n-1} \in$ $A \cap$ int I, the function $\varphi_{n-1}: I \rightarrow \mathbb{R}$ and the closed set P_{n-1} have been define in such a way that t_{i} is an accumulation point of int $P_{n-1} \cap A$ for every $0 \leq i \leq n-1$.

Then we choose a point $t_{n} \in\left(\right.$ int $\left.P_{n-1} \cap A \cap i n t I\right)-\left\{t_{i}\right\} \begin{aligned} & n-1 \\ & i=0\end{aligned}$ such that

$$
\begin{equation*}
\left|t_{n}-t_{p(n)}\right|<\frac{1}{n} \tag{19}
\end{equation*}
$$

Next choose $\varepsilon_{n}>0$ so that

$$
\begin{equation*}
\left[t_{n}-\varepsilon_{n}, t_{n}+\varepsilon_{n}\right] \subset P_{n-1}-\left\{t_{i}\right\}_{i=0}^{n-1} \tag{20}
\end{equation*}
$$

and

$$
\begin{gather*}
\varepsilon_{n} \leq\left|x-t_{i}\right|^{3} \text { for every } x \in\left[t_{n}-\varepsilon_{n}, t_{n}+\varepsilon_{n}\right] \tag{21}\\
\text { and } i=0,1, \ldots, n-1 .
\end{gather*}
$$

Now we apply the Lemma with F defined in (16), $g=g_{t_{n}}, a=t_{n}$ and with $\varepsilon=\varepsilon_{n}$. Then the conditions of the Lemma are satisfied by (17) and (18). (Observe that $a=t_{n}$ is an accumulation point of A since A is dense in itself.) Thus, by the Lemma, we are given the functions g_{1}, g_{2} and closed sets K_{1}, K_{2} satisfying (5)-(9). Now (5) asserts that $g_{1}+g_{2}-g_{\mathrm{t}}$ vanishes in a neighbourhood of t_{n} and hence, by Theorem 1 ,

$$
\left(d\left(g_{1}+g_{2}-g_{t_{n}}\right)\right)\left(t_{n}\right)=0
$$

From this, applying (15) we obtain

$$
\left(d g_{1}\right)\left(t_{n}\right)+\left(d g_{2}\right)\left(t_{n}\right)=\left(d g_{t_{n}}\right)\left(t_{n}\right) \geq 2
$$

and thus we have either

$$
\left(d g_{1}\right)\left(t_{n}\right) \geq 1 \quad \text { or } \quad\left(d g_{2}\right)\left(t_{n}\right) \geq 1
$$

Suppose e.g. $\left(d g_{1}\right)\left(t_{n}\right) \geq 1$ and put

$$
\varphi_{n}(x)=\left\{\begin{array}{lll}
\varphi_{n-1}(x) & \text { if } & x \in I-\left[t_{n}-\varepsilon_{n}, t_{n}+\varepsilon_{n}\right], \\
\frac{(-1)^{n}+1}{2} \cdot g_{1}(x) & \text { if } & x \in I \cap\left[t_{n}-\varepsilon_{n}, t_{n}+\varepsilon_{n}\right]
\end{array}\right.
$$

and $P_{n}=P_{n-1} \cap K_{1}$. It follows from (20), (8) and (9)
that t_{i} is an accumulation point of int $P_{n} \cap A$ for each $0 \leq i \leq n$. In this way we have defined by induction the sequence $\left\{t_{n}\right\}_{n=0}^{\infty} \subset A$, the functions $\varphi_{n} \quad(n=0,1, \ldots)$ and the closed sets $P_{0} \supset P_{1} \supset \ldots$.

The definition of φ_{n} and (20) imply that $\varphi_{n}(x)=$ $=\varphi_{n-1}(x)$ holds for every $x \in I-P_{n-1} \quad(n=1,2, \ldots)$. Now we define φ by

$$
\varphi(x)=\left\{\begin{array}{ll}
\varphi_{n}(x) & \text { if } \quad x \in I-P_{n} \\
0 & \text { if } \\
x \in I \cap \bigcap_{n=1}^{\infty} P_{n} .
\end{array} \quad(n=0,1, \ldots),\right.
$$

We contend that $\varphi \in \mathcal{D}$ and $d \varphi$ is not Baire l. It easily follows by induction from (7), (8) and $P_{n-1} \supset P_{n}$ that

$$
\begin{equation*}
\left|\varphi_{n}(x)\right| \leq 4 \cdot F\left(\operatorname{dist}\left(x, P_{n}\right)\right) \quad(x \in I, \quad n=0,1, \ldots) \tag{22}
\end{equation*}
$$

Hence we have $\varphi_{n}(x)=\varphi_{n}^{\prime}(x)=0$ for every $x \in P_{n}$ which implies (also by induction) that $\emptyset_{n} \in D$ for every $n=0,1, \ldots$ Thus φ is differentiable at every point of $I-P$, where
$P=\bigcap_{n=1}^{\infty} P_{n}$. Since (22) implies $|\varphi(x)| \leq 4 \cdot F(\operatorname{dist}(x, P))$
$(x \in I)$ hence $\varphi(x)=\varphi^{\prime}(x)=0$ for $x \in I \cap P$ and thus we have $\varphi \in \mathbb{D}$. Next we show that

$$
\begin{array}{lll}
(d \varphi)\left(t_{k}\right)=0 & \text { if } & k=1,3,5, \ldots, \tag{23}\\
(d \varphi)\left(t_{k}\right) \geq 1 & \text { if } & k=0,2,4, \ldots .
\end{array}
$$

First we prove

$$
\begin{equation*}
\lim _{x \rightarrow t_{k}} \frac{\varphi(x)-\varphi_{k}(x)}{\left(x-t_{k}\right)^{2}}=0 \quad(k=0,1, \ldots) \tag{24}
\end{equation*}
$$

Let $k \geq 0$ be fixed and let $x \in I$ be such that $\varphi(x)-\varphi_{k}(x) \neq 0$. Then $x \in P_{k}$, since otherwise $\varphi(x)=\varphi_{k}(x)$ would hold, and thus $\varphi_{k}(x)=0$ and $\varphi(x) \neq 0$. This implie: that there is $n>k$ such that $\left|x-t_{n}\right| \leq \varepsilon_{n}$ and $\varphi(x)=$ $=\varphi_{n}(x)$. Now it follows from (6), (21) and from the definiti، of φ_{n} that

$$
\left|\varphi(x)-\varphi_{k}(x)\right|=|\varphi(x)|=\left|\varphi_{n}(x)\right| \leq\left|x-t_{k}\right|^{3}
$$

which proves (24).
By Theorem $1,(24)$ implies that $\left(d\left(\varphi-\varphi_{k}\right)\right)\left(t_{k}\right)=0$, from which we obtain $(d \varphi)\left(t_{k}\right)=\left(d \varphi_{k}\right)\left(t_{k}\right)$. If k is odd, then φ_{k} vanishes in $\left[t_{k}-\varepsilon_{k}, t_{k}+\varepsilon_{k}\right]$ and hence, using Theorem 1 again, $\left(d \varphi_{k}\right)\left(t_{k}\right)=0$. If k is even then, by the definition of φ_{k}, there exists a function $g \in \mathscr{D}$ such that $(\mathrm{dg})\left(t_{k}\right) \geq 1$ and $\varphi_{k}-g$ vanishes in $\left[t_{k}-\varepsilon_{k}, t_{k}+\varepsilon_{k}\right]$.

Therefore

$$
\left(d \varphi_{k}\right)\left(t_{k}\right)=(d g)\left(t_{k}\right) \geq 1 \text { and thus (23) is }
$$ proved.

Let Z denote the closure of $\left\{t_{k}\right\}_{k=0}^{\infty}$. It follows from (19) that for every $k \geq 0$ and $\delta>0$ there are infinitely many even as well as odd natural numbers n such that $t_{n} \in\left(t_{k}-\delta, t_{k}+\delta\right)$. Hence both $(d \varphi)(x)=0$ and $(d \varphi)(x) \geq 1$ holds in a dense subset of Z and thus $\left.d \varphi\right|_{2}$ cannot have any point of continuity. Therefore, φ is not Baire l, contradicting our assumption. This contradiction completes the proof of Theorem 2. \square

We remark that for every scattered set $H \subset I$ there exists a derivation d on D such that $d f$ is Baire l for every $f \in D$ and for each $a \in H$ there is $f_{a} \in \mathscr{D}$ with

$$
(d f)(a) \neq h(a) \cdot f^{\prime}(a)
$$

In fact, let h be a fixed Baire 1 function on I. For every $a \in I$ we can choose a linear functional $\lambda_{a}: D \rightarrow \mathbb{R}$ such that $\lambda_{a} \neq 0$ and $\mathcal{P}_{2}(a) \subset \operatorname{Ker} \lambda_{a}$ if $a \in H$, and $\lambda_{a} \equiv 0$ if $a \in I-H$. Then we define $d: D \rightarrow \mathbb{R}^{I}$ by

$$
(d f)(a)=h(a) \cdot f^{\prime}(a)+\lambda_{a} f \quad(f \in \mathbb{D}, a \in I)
$$

Then d is a derivation by the Corollary of Theorem 1. Let $f \in D$ be fixed and denote $g=d f-h \cdot f$. The set $\{x \in I, g(x) \neq 0\} \subset H$ is scattered and this easily implies that g is Baire l. Since $h \cdot f$ ' is also Baire 1 , the
same is true for
$d f=h \cdot f^{\prime}+g$
which proves our assertion.

References

[1] C. Kuratowski, Topologie, vol.I. PWN, Warszawa, 1958.
[2] Yasuo Watatani, Derivations on continuous functions, Proc. Amer. Math. Soc. 79, No 2 (1980), 206.

