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 Section I. Introduction.

 Section 40 of Kuratowski's Topology Vol. 1 [Ku66] is a study of

 certain singular separable metric spaces. One group of spaces, L, v,

 concentrated (or P), C", and C spaces are "sparse" in the measure

 theoretic sense, in that every such subset of the reals has Lebesgue

 measure 0, and are related to the so-called Lusin set (an uncountable

 subset of the reals R, every nowhere dense subset of which is count-

 able) [ Lu 1 4] . The other group of spaces studied there, a, a, a',

 and always first category (AFC) spaces are "sparse" in the Baire

 category sense in that every such space is necessarily first cate-

 gory, and are related to the so-called Sierpiński set (an uncountable

 subset of R, every Lebesgue measurable subset of which is countable)

 [Si 24]. It is shown that

 i _ v - P - C" - C

 / , '
 (1.1) Countable - ► a' , TI for separable

 - » a - W'FC

 metric spaces, where "TI" means totally imperfect (i.e. contains

 no subset which is homeomorphic to a Cantor set). It is shown (using

 the Continuum Hypothesis, CH, in many cases) that most of the im-

 plications are irreversible. For each property, certain questions

 are considered. (1) Is the property hereditary? (2) Under what

 kinds of mappings is the property preserved? (3) Is the property

 finitely or countably additive? (4) Is the property preserved

 under taking products? (5) What are the possible dimensions

 of such spaces? (6) What can the "Baire order" of such spaces
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 be (i.e. in which Baire class do all the Borei functions fall)?

 This last problem is of course related to the nature of the Borei

 subsets of the space as well as the sets with the Baire properties.

 A subset A of a space X has property Bw(re^ X) if there exists
 an open set Q such that A-Q and Q-A are of first category. A

 has property Br(rel X) if for every subset B of X, B H A has

 property B (rei B) (see [Ku66, Sec. 11] for details). We say that
 W

 a function f has property Bw (Br) if for every closed subset

 P of the range of f, f (P) has property B (B ) (rei domain
 W

 of f).

 The purpose of this paper is to give an expanded version of the

 exposition given in Section 40 of [Ku66]. There are many singularity

 properties which are related to those mentioned above which have been

 studied since 1966, and there are others which were studied earlier

 but were not considered in [Ku66]. There are also Theorems related

 to the properties of (1.1) which were not discussed in [Ku66]. We

 hope to present in an organized fashion a summary of a large per-

 centage of the known relationships between such singularity pro-

 perties and the answers to questions (1) - (6) and related questions

 which are known concerning these properties. No proofs will be given

 for the known results, although the original proofs may be discussed

 briefly in some cases. As the exposition proceeds, certain problems

 will present themselves. Solutions will be provided where the authors

 are able to do so. Other problems will be left open. The organ-

 ization will be as follows. Sections 2 through 8 wi 11 consist of

 a detailed discussion of the properties indicated in (1.1) as well

 as closely related properties which were not considered in [Ku66].
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 Section 9 consists of a discussion of the interrelationships that

 are possible between the "Lusin branch" of (1.1) and the

 "Sierpiński branch". In Section 10 we present some applications

 of the theory of these singular sets to (1) the study of functions

 of a real variable and (2) the study of properties of the space P(X)

 of probability measures on X. This theory has found applications

 in almost all branches of mathematics, but these are the areas

 where the authors have made a contribution.

 By the "classical theory" of singular spaces, we mean the study

 of these singularity properties as they pertain to separable metric

 spaces, and all spaces are assumed to have this property in this

 paper. We will assume the ordinary axioms of set theory (ZFC) plus

 CH when necessary. There has been recent interest in the study of

 some of these properties in more general topological settings and in

 the construction of pertinent examples under set theoretic assump-

 tions other than CH. But this paper will be primarily concerned

 with the classical theory, which relied mainly on CH. We will,

 however, mention results we know of which follow from consistent

 axioms other than CH and which contradict results which follow from

 CH.

 Section II. Lusin sets, concentrated sets, and related properties .

 A subset M of a space X has property L (rei X) if every

 nowhere dense subset of X intersects M in an at most countable

 set. By well-ordering the Cantor subsets of [0,1] into a trans-

 finite sequence of length (assuming CH) and for each countable

 ordinal a, choosing a point [0,1] which is not in any of
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 the first a such Cantor sets, one can construct an uncountable

 set {m^} with property L ( rei R).

 Lusin C Lu 1 4 3 established (with CH) the existence of uncount-

 able sets with property L relative to the reals R, and such sets

 have historically been referred to as "Lusin sets". Actually, P.

 Mahlo described such a set in [Mal3] (see Aufgabe 5), but this

 fact was overlooked historically, possibly because the result was

 not mentioned in the review of [Mai 3 ] which appeared in Fort.

 Math. 44 (1913) p. 92. We thank Prof. John Morgan for informing

 us of this early paper of Mahlo. A space has property v if it

 has property L relative to itself. Of course, a set M situated

 in a space X can have property v and not have property L(rel X)

 [Ku66] C KuSi 36] , for example, a Lusin set can be constructed as

 described above inside a fixed Cantor set.

 The set A Ç X is concentrated about a set B C X if every

 open set containing B contains all but at most countably many

 elements of A. A subspace Y of a space X is said to be

 con(rel X) if it is concentrated about a countable subset of X,

 and a space is said to have property P if it is concentrated about

 a countable subset of itself. The notion of "concentration" was

 defined by Besicovitch [Be34].

 Useful characterizations of property '> are the following:

 (1) X is homeomorphic to a set which has property L ( rei R)

 [ KuSi 36 ] , and (2) X is concentrated about every countable subset

 of itself ([Ku66] and [Sz38]). Both properties L(rel X) and v

 are obviously hereditary, and property L(rel X) is preserved in

 countable unions. Property v is not preserved under taking
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 finite unions [Co81a]. However, if M-j , ... are v spaces
 and each is dense in X = U U ..., then X is a v

 space [Co81a]. Since a set M which is L(rel R) can be trans-

 formed homeomorphically into a subset of a Cantor set, property

 L(re1 X) would not be preserved under homeomorphi sms. But if M

 is L(rel X) and f is a homeomorphi sm from X onto Y, then

 f(M) is L ( reí Y). By constrast, it is known (under CH) [Lu33]

 that for X = the irrationals, there is a 1-1 continuous f : X - X

 which transforms every set with property L(rel X) onto a set with

 property AFC, so this image cannot even have property v.

 We now define two properties, and C ( v ) , which were not

 considered in [Ku66]. Countable unions of v spaces are not

 necessarily v spaces and were called L-ļ spaces in [Br74],
 where they played an essential role in the characterization of spaces

 in which certain variants of Blumberg's theorem hold (to be dis-

 cussed further in Section X). It is shown in [Ku66] that every

 continuous image of a v space has property C", it is shown in

 [Da69c] that Borei images of v spaces have property 8, and it

 was pointed out in [Ro38] that the B image of a v space has
 W

 property C'. Actually a space is the B image of a v space

 if and only if it is the continuous image of a v space and this

 latter property, called property C(v) in [BrCo82], fits properly

 between and property P, so all of the properties in

 (2.1) countable * L(rel X) - L-j -► C(v) + P + con(rel X)
 are different (assuming CH). It is obvious that all of the above

 properties except P are hereditary, and all except L ( rei X)

 and con (rei X) are preserved under homeomorphi sms
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 (indeed C(v) and P are preserved under continuous mappings).

 Likewise, properties , C(v), P and con(rel X) are obviously

 preserved under taking countable unions. The question of whether

 con(rel X) is preserved under homeomorphi sms was rather more

 difficult, being settled (under CH) in the negative by Rothberger

 [Ro41]. It was also shown (under CH) that every number set of

 cardinality c is the continuous image of a con(rel R) set, but

 that property con(rel R) is preserved by continuous functions from

 R i nto R .

 As far as products are concerned, it was shown (using CH) by

 Sierpiński in C Si 35 3 that there is a set M with property L(rel R)

 such that the "difference set" D = {x-y|x CM, y £Mí = R. It

 follows that the projection of M2 on the line "y = - x" is the

 entire line, so that M2 cannot have property C, which is weaker

 than con(rel X). Thus none of the properties of (2.1) is pre-

 served under taking products.

 Sierpinski's difference set D of the previous paragraph is

 a "vector sum" of two Lusin sets. There has been recent interest

 in singularity properties defined in terms of such vector sums.

 If A and B are subsets of the reals R, then A + B = (a + b|

 a € A, b £ B} . Talagrand [Ta75] studied sets A Ç R which

 satisfy what we will call property (T): for every compact set K

 with x(K) = 0, we have x(A+K) = 0, where x is Lebesgue measure

 (Talagrand actually dealt with subsets of a locally compact group

 and Haar measure). He showed that no uncountable analytic set

 satisfies (T). It follows that (T) - TI. But he showed that

 CH implied the existence of a set B with cardinality c which

 191



 satisfies (T) and is such that for every dense G. subset X of
 <5

 R, X + B = R. Then, Friedman and Talagrand [FrTa80] proved a

 theorem using Martin's axiom (MA), which under the stronger axiom

 CH yields the existence of a subset A of R such that (1) |A| =

 c, (2) for every subset X of R for which a(X) = 0, x(A+X) = 0,

 (3) for every first category subset X of R, A+X is first cate-

 gory, (4) A is concentrated about the dydadic rationals, and

 (5) A is AFC (see Section VII). We will refer to property (2)

 above as Property (T+). The fact that (T) - TI was strengthened

 in [EKM81], where it was shown that if P is a perfect subset of

 R, there is actually a perfect subset M of E with '(M) = 0

 and P+M = R (in which case M x P has infinite linear measure).

 It was also shown that con(rel R) - (T), and examples related to

 the above mentioned examples of Sierpiński, Friedman, and Talagrand

 are given. In particular, it was shown that condition (T+) for

 sets AS R is implied by the following: (T*) for every subset

 X of R with '(X) = 0, X x A has linear measure zero. The

 question of whether (T+) = (T*) is raised. They show that CH

 implies the existence of an uncountable subset of R which satisfies

 (T*) and is concentrated about the rationals. Note that while (T)

 is intermediate to con(rel R) and TI, (T+) is not because of the

 Lusin set of Sierpiński which has difference set R. ((T) and

 analytic) is impossible for subsets of R, but they show that

 Gode!' s "V = L" axiom implies the existence of an uncountable

 coanalytic set which satisfies (T+) and is concentrated about the

 rationals. For other examples of singular coanalytic or pro-

 jective sets constructed under axioms other than CH, see [Ku48],

 [0s75].
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 It was shown in [Sz37a] [Ku66] that any set with property C

 must be O-dimensional , so all of the properties in (2.1) imply

 O-dimensionality.

 Telegarsky [Te72] has defined a sequence of properties which

 are generalizations of (and weaker than) property P. If n is

 a positive integer, we say that X is n-chai n-concentrated (n-CC)

 if there is a sequence X = Xq ? X-j - . . . i? Xn such that Xp is

 countable and X^ is concentrated about X^ for each
 0 < k < n-1 (so that "1-CC" is P). He showed that P - n-CC -

 n+l-CC -► C" (C" is stronger than C and is discussed in the next

 section), and that property n-CC is preserved under taking

 countable unions. He also showed that if X has property Pm

 (i.e. for some countable set A £ X, Xm is concentrated about

 Xm-(X-A)m), for each ' <_ m £ n, then Xn is n-CC, with the

 countable set being An. This is related to an example of Michael

 [Mi 71] and to later work of Cox, [Co80] and [Co81a] which will be

 discussed later in this section.

 Gardner [Ga79] defined a sequence of properties, B-| , B2» •••

 B^, ..., which are generalizations of (and weaker than) con(rel X).

 Let Y be a subspace of X. 8^ is just con(rel X). If a is

 a non-limit ordinal or an ordinal which is not cofinal with cdq,

 we say that Y has property if there is a set A Q X with

 property B. for some 3 < a such that if G is an open set

 containing A, then Y-G has property B^ for some y < a. If

 a is a limit ordinal which is cofinal with <0q, we say Y has
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 property if Y isa countable union of previously defined

 sets. All of these properties are (rei X). He showed that

 con B -»■ B -► C for a < w0, and that if co0 = a. < 8, then a a+l - 2 L

 B = B„. He also showed that B <r/- B.^ if n < un, and that the a 3 n' n+l u

 properties Bq are hereditary and preserved under taking count-

 able unions. The properties are related to Telgarsky's properties

 as follows: (2n-l )-CC - Bn .

 The entire study of singular spaces has been closely related

 to the so-called "Baire order problem". The Bai re order of a

 space X is defined as follows. Let Gg, , ..., G , ... be the

 usual transfinite sequence with union the Borei sets, where Gg

 contains the open sets, G-ļ contains the G5 sets, G£ contains
 the GP sets, etc. The Baire order of X is the first ordinal 6a

 a such that Ga = Ga+^ (Note: in some cases the listing of the

 Bore! classes starts with G^ containing the open sets, so that

 the finite Baire order numbers are shifted by 1 ) . The reals have

 Baire order ^ . [Ku66, Sec. 3], and countable spaces have Baire
 order _< 1 [Si30]. The "Baire order problem of Mazurkiewicz"

 [Po30] was to determine whether it is true for each countable

 ordinal a, there is a space with Baire order a. The Sierpiński

 set was shown by Szpil rajn [Sz30b] to have Baire order 1, and

 Poprugenko [Po30] [Ku66, p. 526] showed that an uncountable v

 space has Baire order 2. Poprugenko stated in 1930 that the

 general problem "remains unsolved and appears to be very difficult

 even for a = 3". Indeed, the problem remained unsolved (even for

 o = 3) until very recently, when Miller and Kunen [m«79] verified

 (under CH) the existence of a space with Baire order a for every

 countable ordinal a (the "shifted" counting system is used herein)..
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 In proving that v spaces have Baire order £ 2, it is

 actually J possible to show that B sets must be the union of a J w

 G5 and a countable set [Ku66, p. 526]. It was shown in [Br77b]

 that in Lļ spaces, even Br sets are not necessarily the union
 of a G. and an F , but that B sets are necessarily G„ 5 a r 5a

 sets, so that Lļ spaces also have Baire order < 2. But an
 example (using CH) was given of a P space which has Baire order

 >^3. It was not determined what the exact Baire order of that

 space was.

 Brown and Gardner [BrGa79] have defined a sequence of proper-

 ties which are generalizations of (and weaker than) properties

 v and Lļ . The motive behind the definitions was the hope of

 gaining further insight into the Baire order problem. The proper-

 ties are similar to those of [Te72] and [Ga79] in that they

 lie intermediate to v and C. Setting Vļ = v, define L2,

 L-j, ... as follows. A '>n space is one for which every nowhere

 dense subset is L„ , , and an L„ space r is the countable union of n- , 1 , n r

 v spaces. A space is one for which every nowhere dense sub-

 set can be written as the countable union of sets, each of which

 is L„ for some n. It turns out that extension of the defin-

 itions to L^, v^+1 , ... etc. yields nothing new. It is shown

 that

 P = 1-CC - i-CC

 (2.2) v = Vļ h- Lļ s'* C" for 2 <_ i < u,
 n. , / * * Z' VLi , * Vi *

 and that CH implies i-CC H- vi+ļ for 1 < i < u, and that all

 the v. and Li properties are different. The (CH) example of
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 [Br77b] shows that P-HL^ for 1 <_ i < u, and the question

 whether P ♦ v is left open. r The v and L properties r r are üj r a a r r

 obviously hereditary and preserved under homeomorphi sms . Property

 v is not preserved under taking countable unions, but proper-

 ties L and v are. The L„ spaces all have Bai re order nun

 < 2 and spaces have Bai re order £ 3 (hopefully some

 '> space might have Baire order = 3).

 It should be noted that the Baire order of a space X can be

 defined equivalently as follows. Let Bg, B-j , ... be the trans-

 finite sequence such that Bg = C(X), the collection of all con-
 tinuous real valued functions with domain X, and for each a,

 Ba contains the functions which are pointwise limits of sequences

 of functions which come from previously defined classes. The Baire

 order of X (also called the Baire order of Bg) is again the first

 a for which Ba = Ba+, . There has been a great deal of interest

 in various "Baire order problems" different than the one referred

 to here, where Bg is taken to be some class of functions other

 than C(X) for some space X, and the Baire order of Bg is
 determined. The reader is referred to the work of Maul din [Mn74],

 [Mn75] for an extensive study of various Baire order problems.

 Cox [Co80][Co81 a] has defined a sequence of properties which

 are generalizations of (and stronger than) properties L, v, and P.

 For example, a space S is P^ if there exists a countable dense

 subset B of S such that Sn is concentrated about Sn - (S-B)n.

 Hence, P^ = P. Likewise, is defined, requiring concentration

 about every dense grid. A space is P^ or if it is Pn or
 v11 for every positive integer n. It was shown in those two

 papers that
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 » n+1 n 1
 v + v v ■+ 'J = v s - r

 (2.3) ^ I ^ 'K
 p« ^ pn+1 ^ pn ^ pi _ p
 i

 Hvn, HPn, Hv", and HP°° denote the properties of being

 hereditari 1y vn, Pn, v", and P°' respectively. Property vn

 (n >_ 2) is not hereditary. In fact, a space can go from v°°

 all the way to by the removal of a countable set. Pn and

 HPn spaces are preserved by continuous transformations, but v11

 spaces are not for essentially the same reason that spaces

 are not. As for unions, Hvn, Pn, and HPn spaces are preserved

 only in the weakest of senses. That is, when they are unioned with

 countable sets (a density requirement is also needed for Hvn

 spaces), the result enjoys the same property. Even this weak

 preservation falls apart for vn spaces. An extension of Sier-

 pinski's [Si 35 ] example is given in [Co81a] where it is demon-

 strated that for each n, there is a Hvn space for which the

 vector sum © n+^ S = R. This implies that Sn+^ does not have
 i =1

 property C, so products here are rather sensitive. The dimension

 of vn and Pn spaces are, of course, zero, and the Baire order

 of vn spaces cannot exceed 2. It is believed, but not sub-

 stantiated, that Brown's example [Br77b] of a P space with Baire

 order > 3 can actually be made into a HP°° space.
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 Section III: Properties C" and C and related properties.

 A space X with metric 6 has property C ( re 1 6) if for every

 sequence {xn} of positive numbers, there exists a sequence {xn>

 of elements of X suchthat X C N^x-] ,a-j ) U N6(x2,a2) u
 where N.(x,a) = {y e X|$(x,y) < a}. This property was de-

 <5

 fined by Borei [Bol 9], and he called sets with this property "the

 sets whose asymptotic measure is lower than any series given in

 advance". This property is also called the property of "strong

 measure zero" [La76]. Besicovitch [Be34] showed that for subsets

 of the reals, con(rel X) - C -»■ 6 (also see [Sz34], where Poprugenko

 is credited with showing C - ß in general). Besicovitch also

 showed that property C for subsets of R is equivalent to the

 requirement that X have measure zero with respect to every

 "Hausdorff" measure in (also see [Da69a] and [Da73] in this
 <?

 regard) .

 Property C" is a topological version of C defined by

 Rothberger [Ro38]. A space X has property C" if it is true that

 for every system {G(x,n)|x£X, n=l,2,...} of open sets such

 that X € G(x,n) for each x and n, there necessarily exists a

 "diagonal sequence" {xn} of elements of X such that

 X £ G( x-1 ,1 ) U G(x£,2) u . . . . Rothberger also defined property

 C', which is similar to C", except the "diagonal sequence" is

 required to exist only for those systems such that for fixed n,

 there are only finitely many different G(x,n). He showed in

 [Ro38] that within the realm of a-totally bounded spaces (which

 includes subspaces of the reals) (1) v - C" - C' - C and

 (2) properties C' and C" are invariant under continuous
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 transformations and therefore countably additive (that P - C"

 follows from [Te72]). He left open at that time the question of

 whether C" = C' = C and raised the question of whether property

 C' is preserved by taking images under functions with the Baire

 property. We do not know whether the results concerning property

 C' carry over from o-totally bounded spaces to separable spaces,

 but the results concerning property C" do (see [Ku66]). In

 [Ro41], it is shown (under CH) that property P is not here-

 ditary, [0,1] is the continuous image of a con(rel R) set,

 properties C' and C" are not hereditary, and property C is not

 preserved under nomeomorphi sms. Property C is preserved by

 transformation under uniformly continuous functions [Gr81], and

 for subsets of R, it is preserved by continuous transformations

 from R into R [Sz30a]. Rothberger [Ro41] showed (under CH)

 that every set of reals of power c is the continuous image of

 a con(rel R) set, but property C' is preserved under such trans-

 formations, it follows (under CH) that con(rel X)-|-»C'. Besic-

 ovitch showed (under CH) in [Be42] that C-f»con(rel X), and

 R. Gardner has shown (in an informal communication) that that

 example of 3esicovitch ' s actually satisfies C", so we have

 con(rel X)^
 (3.1) P / ' °-tota11y bounded spaces.

 When we include the previously defined properties, we have the

 following for separable spaces

 L™ - Ln - L1 = L
 / ^ h

 (3.2) countable -► v -v - v = v = Vļ -»■ Lļ
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 and

 con(re1 X) = B-ļ *

 (3.3) Lļ - c(v) h. p = i -cc - i-cc -
 'J. H- J- - V
 1 1 OJ

 Property C" appears to be fundamentally different from

 property C in the sense that while the collection of all sequences

 'ļ, ... of positive numbers has cardinality c, the collection
 of systems {G(x,n)} such as are used in the definition of C"

 has cardinality 2C if X has cardinality c. However, the

 definition of property C" as stated here is equivalent to the

 requirement that for every "double sequence" (U^ļm,n=l ,2, . . . }
 1 2

 of open sets such that XC Un U Un U - - • for each n, there

 necessarily exists a sequence m(l), m(2), ... such that

 XC U^]) u U*(2) U ... [Ro41 , p. 114], and the collection of all

 such "double sequences" has cardinality c. The similarity between

 C" and C is made even clearer by the following characterization

 of C" which is given in [BrCo8l]: A space X (with metric 6)

 has property C" if and only if it is true that for every

 sequence f ^ , f ... of positive valued continuous functions

 with domain X, there exists a sequence x-j , ... of elements

 of X such that X Ç N^ix^ ,f (x-j ) ) U jf (Xg) ) U • • • •
 Properties in the Lusin branch are measure theoretically

 singular because they all imply property s, sometimes called

 "universal measure zero", and the properties in the Sierpiński

 branch are singular in the Bai re category sense because they all

 imply property AFC. Lusin [Lu33] raised the question of just

 how measure theoretically "massive" it is possible for the AFC
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 sets to be. The comparable question of just how categorically

 "massive" it is possible for the sets of lusin type can be was

 considered in [BrCo81]. It is clear that an uncountable space X

 with property v must be 2nd category and must therefore contain

 a subspace which is Bai re complete (BC) (i.e. every open set is

 2nd category with respect to itself). L-j spaces can be 1st cate-

 gory. On the other hand, it is impossible for a space Y which

 is con(rel X) to be strongly Baire complete (SBC) (i.e. every

 closed set in Y is 2nd category relative to itself). However

 it was shown in [BrCo81] that (assuming CH) there is a space

 with property C" which is SBC.

 We have already stated the results that property C implies

 O-dimensionality and that (under CH) none of the properties in

 (3.2) and (3.3) are preserved under taking products.

 Section IV: Universal null sets - property g.

 The study of the so-called "universal (or absolute) null"

 sets, sets of "universal (or absolute) measure zero", or sets with

 "property g" has been a long and on-going one. A good summary of

 some of the early work on the subject was given in the "Annex" to

 Vol. I of Fund . Math. , which was written in 1937 by S. Braun and

 E. Spi lrajn-Marczewski in collaboration with C. Kuratowski . The

 pertinent part of the "Annex" is the response to "Problem 5" of

 Vol. I of Fund. Math., in which Sierpiński had asked whether

 there exists an uncountable set with property (ii) described

 below. It is shown in the "Annex" that the following properties

 for subsets A of I = [0,1] are all equivalent:
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 (i) for every increasing function f: R - R, A(f(A)) = 0,

 (ii) for every homeomorphi sm f from A onto a subset of R,

 x(f (A) ) = 0,

 (iii) for every bi -measurable(B) 1-1 f:A - R, x(f(A)) = 0,

 (iv) for every 1-1 f:A + R for which f ^ is Borei, x ( f ( A) ) = 0,

 (v) for every complete continuous measure w on I, u( A) = 0.

 By a complete continuous measure on a space X we mean the com-

 pletion of a nonnegative Borei measure on X which assigns zero

 to single element sets. Lusin and Sierpiński had shown (without

 CH) [ LuSi 18] that there is a set Q of cardinality which

 satisfies (i). The set Q was constructed by considering a non-

 Borel co-analytic set C C I . Then C = E-j U E£ U ...UE^U...
 a < n, where a is the first uncountable ordinal, the E are

 a

 disjoint Bore! sets, and if B is a Borei subset of C, then B

 is a subset of a countable union of the Ea's. Q contains just

 one point from each of the "constituants", Eq , of C. Then,

 it was shown in [Si 25] that the same set Q satisfies (ii) and in

 [Si34e] that Q satisfies (iii). It was shown in [Si Sz36 ] that

 the following two conditions are equivalent for subsets A of a

 separable metric space X:

 (a) for every complete continuous measure w on X, y(A) = 0,

 (a) for every complete continuous measure u on A, u(A) = 0.

 It was shown in [SiSz36] (without CH) that there is a subset of

 I of cardinality which satisfies (iv), (v) = (a), and (ß).

 That example was not the same as the previous Q, but was based

 instead on the so-called "ň-Q* gap" of Hausdorff [Ha36], which

 implies the existence of a transfinite sequence
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 8, , B0, . . . , B , . . . a < n of disjoint Borei subsets of I such
 I ¿ a

 that if u is any Bore! measure on I, there is a such that

 u(BaU 8o+ļU...) = 0. The example contains just one point from
 each B . These "real" examples based only on ZFC have cardinality

 Hy The question of whether there is a "real" example of a 3

 set of cardinality c was considered in the "Annex". It was

 pointed out that CH examples with cardinality c were constructed

 in C Lf 243 and [Sz34]. We now know that it will not be possible to

 exhibit such an example just under ZFC because Laver [La76] point-

 ed out that it is consistent that it be true that every ß space

 is of cardinality Xļ . Thus, we will see no "real" examples of

 ß sets of cardinality c. On the other hand, since (MA + not CH)

 has been used to establish the existence of a ß set of cardin-

 ality c (see the remarks preceding the theorem in [GrRy31]), we

 will see no "real" proof that every ß set is of cardinal i ty .

 It is natural at this point to wonder why no "real" examples

 of uncountable v spaces or even C spaces have appeared in the

 literature. Kunen [Kn76] showed that for a fairly general class

 of topological spaces X, (MA + not CH) implies there will exist

 no uncountable sets with property L(rel X). Then, Laver [La76]

 showed that if ZFC is consistent, then so is (ZFC + every set

 with property C is countable). In view of this result, we see

 that no "real" examples of uncountable spaces with any of the

 properties in (3.2) - (3.3) will be found.

 The study of ß sets has been closely related to the so-

 called "problem of measure" of Banach, namely the question of

 whether or not there is a cardinal < which is what is now called
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 "real valued measurable", i.e. for which there exists a non-negative

 measure defined for al 1 subsets of k which assigns zero to

 singletons but is not identically zero. Banach and Kuratowski

 showed (under CH) [BaKu30] that c is not such a cardinal, and

 Ulam [U130] showed (without CH) that ří-j is not one either (also

 see [0x71, Sec. 5]). When it was shown (without CH) in [SiSz36]

 that there is a ß set of cardinality ^ , this of course also
 settled the Banach problem for For recent results and

 further references concerning generalizations of this problem, see

 [Gr80] .

 That C -»• 3 is due to Besicovitch [3e34] for subsets of R,

 and to Poprugenko (see [Sz34]) for the separable metric case.

 There is a wealth of literature (assuming CH) showing that C+|-ß-

 The first example that we know of, given in [MzSz37] was a e set
 n+i

 in R of dimension n (sets with property C must have dim-

 ension 0 [Sz37a]). An eariler example would have been the square

 of the Lusin set of Sierpiński [Si 35] with a square which is not

 C, because property ß is preserved under taking products

 [Sz37b] .

 The (CH) proof in [MzSz37] of the existence of a ß set

 in Rn+^ of dimension n was based upon (1) the theorem of

 Hilgers (see [Ku66, p. 302]) which guarantees that for every n ,

 every linear set of cardinality c is the 1-1 continuous image

 of a subset of Rn+^ of dimension n, and (2) the fact that

 property ß is preserved under 1-1 mappings f for which f ^

 is a Borei function [SiSz36].
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 Other examples which show C-H-0 (recent ones based on ZFC)

 are also based upon theorems concerning preservation of property

 3 under various kinds of mappings. It follows from (2) of the

 previous paragraph that the graph of an arbitrary function with

 domain a 6 set would have property 0. Since projection from

 a product space onto one of the axes is continuous, it follows

 that an arbitrary space of the same cardinality as a 3 space is

 the 1-1 continuous image of a s space. From this and CH it

 follows that property s is not preserved under 1-1 continuous

 transformations. This idea was carried further in [Si 38] where

 it was shown (under CH) that property 0 for subsets of the unit

 interval I is not even preserved under a continuous function h

 from I into I, and since property C is preserved under such

 transformations [Sz30a], this shows (under CH) that C*1-ß. Later,

 Darst [Da70a] strengthened this result by making the function h

 also of bounded variation.

 The CH assumptions in the results in the previous paragraph

 have recently been removed by E. Grzegorek. Grzegorek proved (in

 ZFC) [Gr80, Cor. 2] that there exist two subsets A and B of I

 such that I A ļ = |B|, A is e, and B has positive outer

 Lebesgue measure (and is therefore not 0). Then the results of

 Sierpiński and Darst discussed in the previous paragraph were

 improved and established without CH in [Gr81]. In particular, it

 was shown in ZFC that (i) there exists a continuous f:I - I which

 transforms a ß subset of I into a set which is not Lebesgue

 measurable, and (2) there exists a C°° function f : I - I which

 transforms a 0 set into a set which is not "universally measur-
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 able (rei I)" (defined below) and therefore not 6. The latter

 result also improves a result of Darst which appeared in [Da71b].

 In connection with (2), Grzegorek showed that functions of bounded

 variation from I into I would necessarily transform 0 sets

 into sets of Lebesgue measure zero.

 The question as to whether or not "vector sums" of 8 sub-

 sets of R have property 8 was answered (under CH) by

 Sierpiński [Si35] (and others [Da65], [EKM81]) who described a

 Lusin set which has difference sets equal to R. Grzegorek has

 recently informed us (in personal communication) that he can now

 answer the question without CH, by showing that the set M which

 is the range of the function mentioned in (ii) of the previous

 paragraph, while not universally measurable, is the vector sum

 of two e sets. He did not see how to make M have positive

 Lebesgue measure, but pointed out that it will not be possible to

 make M = R (in ZFC) because of the previously discussed results

 of Laver [La76].

 In [GrRy81], Grzegorek and Ryll -Nardzewski study the spaces

 X for which (i) there exists a e subspace Y of X of the

 same cardinality as X. They show (among other things) that for

 spaces X which are not TI, (i) will hold if and only if (ii)

 there exists a permutation p of X (a 1-1 function from X onto

 X) such that p = p ^ and the graph of p is 8. They asked if

 there exists a Sierpiński set with property (ii). Cox described

 such an example (using CH) in [Co81b]. Since a Sierpiński set X

 which is the domain of that function p must be nonmeasurable,

 it cannot have property C. Sut it is a uniformly continuous image
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 of the graph, so the graph is another space which has property

 S but not C.

 Finally, we will discuss the relationship between the 8

 sets and the "universally (or absolutely) (or perfectly) measurable"

 sets. The first extensive study of these sets was carried out by

 Szpi lrajn-Marczewski in a paper [Sz37b] which was written in Polish

 and published in C.R. Soc. Sci. Lett. Varsovie in 1937, and has not

 been generally available to many mathematicians. We thank John

 C. Morgan for providing us with an English translation of this

 important paper.

 Following Szpi lrajn-Marczewski , we will say that a subset A

 of a space X has property M(rel X) if for every Borei measure

 u on X, there exist Borei sets B-ļ Q aCB£ with y(Bļ) =

 u^) > and we say that A is "universally (or absolutely)
 measurable" or that A has property M if A has property

 M(rel X) for every space X in which A can be embedded.

 [Sz37b] contains an extensive study of these properties as well as

 the "absolutely measurable" functions. Of primary interest to us

 are the following results. If X isa space, then the class of

 subsets of X with property M(rel X) forms a a-algebra which is

 closed under operation (A), so that it contains the class of

 analytic subsets of X, and if fisa bi -measurable(B) function

 from X into Y, f transforms sets with property M(re1 X) onto

 sets with property M(rel Y). It is shown that A has property

 M if and only if A has property M(rel X) for some complete

 space X in which A can be embedded. Property M is preserved

 under bimeasurable(B) mappings. If A has property M(rel X),
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 then A X Y has property M(re1 X x Y). It is shown that the

 following property for subsets A of a space X,

 (o) for every space X in which A can be embedded and every

 continuous complete measure u on X, y(A) = 0,

 is equivalent to properties (a) and (ß), given above, and also to

 each of the following properties,

 (y) every subset of A has property M, and

 (6) A is TI and has property M.

 It is shown that the 3 subsets of a space X form a a-ideal,

 and that the product of two sets isa s set if and only if both

 components are. [Sz37b] also includes an expository discussion

 of many of the results about property 3 known at that time, as

 well as comparisons with property AFC and property (s°), discussed

 below. It is also shown that Hurewicz's property,

 (H) X is uncountable and every O-dimensional subset of X is

 countable,

 implies property 3 (Hurewicz [Hu32] had shown that CH implied

 the existence of a subset of Hilbert space with property H, and

 Hausdorff had shown [Ha36] that H * AFC).

 Recall that the Lebesgue measurable subsets of R are the

 sets whose symmetric difference with some Bore! set is of Lebesgue

 measure zero. It was shown in [Sz55] (under CH) that the subsets

 of an uncountable complete space X with property M are not

 just the sets (Mq) whose symmetric difference with some Borei

 set has property 3. In particular, it was shown that (under CH)

 there will exist a collection with cardinality 2 of M sets,

 no two of which have symmetric difference a ß set. This result
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 was improved in [GrRy80], where it was shown (without CH) that there

 will actually exist an analytic set which does not have property

 v
 Spi lrajn-Marczewski ' s result that universal measurabi 1 ity is

 an intrinsic invariant relative to complete spaces says that the

 question of whether or not a space X is universally measurable

 depends only on the topology for X. R.M. Shortt [Sh82a] has

 recently shown that it actually only depends only upon the Bore!

 structure of X. In particular, he showed that if d^ and d2
 are two metrics for X which induce the same Borei structure on

 X, then X has property M(rel the d-j -completion of X) if and

 only if X has property M(rel the d2_completion of X). Then,

 in [Sh82a], [Sh82b], and [Sh82c] he gives many new characteriza-

 tions of and interesting results related to properties M and

 ß, "perfect" probability measures, marginal and conditional

 distributions, and simultaneous extensions of measures. For

 example, it is shown in [Sh82a] that Y has property ß if and

 only if it is true that for every pair of spaces X,Z and every

 Pair Pw anc* Pw, probability laws on X x Y and Y x Z, xy yz

 respectively, with common marginal P^ on Y, it follows that
 there is a probability law P on X x Y x Z with marginals P

 xy

 and Pyz.
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 Section V: Sierpiński sets arid property a.

 A set of real numbers X has property S if it intersects

 every set of Lebesgue measure zero in a countable set. An uncount-

 able set with this property can be constructed (under CH) by well-

 ordering the 6^ sets of measure zero into a transfinite sequence

 Kq» K-ļ , . . . , Ka, ... o < n, and then (when possible) picking just

 one element from each set K - LL^ (see [Ku66, p. 523]). Such
 ot p<a p

 a set was first constructed by Sierpiński [Si 243 . We say a separable

 metric space X has property a if every F set in X is a G$
 in X (note that this is equivalent to X having Bai re Order £ 1).

 That S * a for subsets of R was first shown in [Sz 30b]. Since

 an uncountable set with property S can be transformed homeomör-

 phi cal 1 y into a set of measure zero (which would not- have property

 S), but property o is clearly a topological property which would

 be preserved under homeomorphi sms, it is clear that CH implies

 S«-|- a for subsets of R.

 The sets with property S and the analogies that exist between

 this property and property L (rei R) were studied extensively by

 Sierpiński in [Si 34a, Ch III]. The property is obviously here-

 detary and preserved under countable unions. Sierpiński gave the

 following mapping theorems which characterize the property (under

 CH): (1) (without CH) if f:R R is measurable, then f transforms

 S sets into AFC sets (defined below), and conversely,

 (2) (assuming CH) if A c R and every measurable f: R ♦ R trans-

 forms A into a 1st category set, then A must have property S.

 These results are analogous to the facts that (l') (without CH)

 if f:R -► R isa B function, then f transforms sets with
 W

 property L(rel R) into 8 sets (see [Ro38]), and (21) (assuming
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 CH) if Ac R arid every Bw f : R - R transforms A into a set of

 measure zero, then A has property L(rel R) (the proof of this

 would be the same as that of (2)).

 Property S (rei X) can be suitably defined for X = Rn or

 any other locally compact group, where Haar measure is available.

 However, it is obvious that the product of two sets with property

 S (rei R) will fail to have property S(rel R2). We know of no

 results about vector sums of Sierpiński sets such as were esta-

 blished about Lusin sets, and which might show, for example, that

 the product of two sets with property S might not have property

 X or AFC (discussed below).

 We do not know of very many references to papers concerning the

 property a. It is obviously hereditary and preserved under homeo-

 morphisms. We do not know if the property is preserved under

 continuous mappings, taking finite or countable unions, or

 taking products. We do not know in general if the property

 "Bai re order £ o" is preserved under these operations (the

 countably increasing union of spaces with Bai re Order <_ 2 will

 have Baire order <_ 3 [BrGa79]). It was shown in [MzSz37] that sets

 having property o and finite dimension have dimension zero.

 This fact, plus the theorems of Hilgers (see [Ku66, p. 302]), plus

 CH, imply that property a is not preserved under mappings by

 1-1 functions with continuous inverses.
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 Section VI Rari fi ed sets - properties x and a'.

 A set A is said to be "rarified" or to have property x

 if every countable subset of A is G. relative to A. A subset

 A of a space X is said to have property x' (rei X) if for every

 countable subset C of X, A U C has property x. It is clear

 that for subsets of R,

 (6.1) countable - » S ^ x,
 X- (rei rK

 and that for separable metric spaces the implications not involving

 S hold (where R is replaced by X).

 An uncountable example of a set with property x' (rei R) was

 given (without CH) in [Si 45b ] (see [Ku 66, p. 521]).

 In [Ro 39] (also see [Si 39] and [ P o.. 55]) an example was given

 (without CH) of a subset M of the irrationals such that M has

 property x but M U (rational s} does not. This shows (without

 CH) that x1 (rei R ) <-f- x for subsets of R, and that property x

 is not preserved under taking even finite unions. On the other

 hand, property x'(rel X) is countably additive [Si 37a].

 It was shown in [Ku 33] that property x is preserved under

 transformation by 1-1 functions f such that f"^ is continuous.

 From this it follows (as it did for property s) that (1) the graph

 of an arbitrary function with domain a x set also has property

 x, (2) any set which has the same cardinality as that of a x set

 is the 1-1 continuous image of a x set, and (3) (assuming CH)

 for every n, there will exist x subsets of Rn+^ of dimension

 n. (1) and (2) were pointed out in [Ku 33] and (3) was used in

 [MzSz37] to show (under CH) that a *4- x.
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 By contrast, it was shown (under CH) in [Si 45a] that property

 a' (rei R) is not even preserved under homeomorphic transformation

 onto another subset of R. However, if f isa homeomorphi sm of

 a space X onto a space Y, f transforms the sets with property

 a' (rei X) onto sets with property a' (rei Y). Sierpiński did

 show in [Si 45a] that if A c R has property a' (rei R) and is

 the 1-1 projection of the subset H of R2 (i.e. H is the graph

 of an arbitrary real valued function with domain A), then H has

 property a' (rei R2). But we still do not know if there are sub-

 sets of Rn+^ of dimension n with property a' (rei Rn+^ ) .

 Mauldin gave an extremely powerful example in [Mn 77] which

 shows (under a set theoretic assumption weaker than CH) that

 off- a. The example there has property a, but has Bai re order

 - CO ļ •

 We know of no results concerning vector sums or products of

 spaces with properties a or a'.

 There is one interesting characterization of property a' in

 terms of concentrated sets. A subset A of a space X has pro-

 perty a' (rei X) if and (under CH) only if A contain no un-

 countable subset which is con(rel X) [Si 45a].
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 Section VII: Always first category sets.

 A set A will be said to have property AFC if every dense in

 itself subset of A is first category relative to itself. Lusin

 described (under CH) an uncountable subset of R with this pro-

 perty in his early paper [Lu 14]. He established the existence

 of such a set (without CH) in [Lu 21]. (Also see [Si 34b]). He

 showed X - »AFC and (under CH) that x *-{- AFC in [Lu 33].

 Rotherberger showed (without CH) in [Ro 39] that Xf-bAFC.

 This property is related to the sets with property Br in the

 same way that the sets with property B are related to those with

 property M. First we review some facts concerning properties

 Bw and Br (see [Ku 66] for details). If X is a complete space,

 the classes B..(rel X) B„(rel X) form o-algebras containing W i

 the Borei sets, are closed under operation (A),

 and therefore contain the analytic subsets of X. If A has

 property Br relative to any complete space X in which A can

 be embedded, then A has property Br relative to every space in

 which A can be embedded (this "universal" property will be called

 property Bf).

 There is an abundance of literature studying the equivalence

 between measure and Bai re category, where (1) the sets of Lebesgue

 measure zero, (2) the Lebesgue measurable sets, (3) the universally

 measurable sets, and (4) the ß sets are shown to be in many ways

 analogous to (l') the first category sets, (21) the sets with

 property Bw (rei X), (3') the sets with property Br (rei X) and

 (41) the AFC sets, respectively. The reader is referred to the

 papers of Spi Irajn-Marczewski and Morgan which appear in the list

 214



 of references for more complete discussions of these analogies.

 We know (see [Ku 66]) that for subsets A of a space X,

 property AFC is equivalent to each of the following:

 (y') every subset of A has property 8p, and

 (ó') A is TI and has property B .

 The class of AFC subsets of a space X isa o-ideal (see [Ku 66]

 and [Si 34a]). Property AFC is preserved under homeomorphi sms but

 (assuming CH) not under 1-1 functions with continuous inverses

 [Lu33]. More specifically, defining a 1-1 bimeasurable function

 f for which f is in Baire's class a and f"^ is in Baire's

 class ß to be a generalized homeomorphi sm of class a, 8,

 Sierpiński [Si 34d] showed that property AFC was preserved under

 generalized homeomorphi sms of class 0,3 for every 8 < fi, but

 (assuming CH) not necessarily under one of class 1,0. There exists

 a continuous f:R -► R which transforms an AFC set into a non-Br

 set, and there exists a continuous f : R ♦ R for which there is

 an AFC set M such that f"^(M) is non-Br (see [Si 37b]).

 Again, we know of no results concerning vector sums of sets

 with property AFC. The question of whether property AFC is pre-

 served under taking products was raised by Szpil ra jn-Marczewski

 in "Probleme 68" at the end of Vol. 25 (1935) of Fund. Math. We

 know of no solution to the problem. Sierpiński [Si 34c] gave an

 example (under CH) of an AFC subset A of I = [0,1] such that

 A X I does not have property Br<

 Recall that the subsets of R which have property Bw (rei R)

 are the sets whose symmetric difference with some Borei set is first

 category. Sierpiński [Si 34f] showed that the Br subsets of R
 are not just the sets (3°) whose symmetric difference with some

 215



 Borei set has property AFC, by showing (under CH) that there exists

 a collection with cardinality 2C of B sets, no two of which
 r

 have symmetric difference an AFC set. The result was improved

 in [GrRy 80], where it was shown (without CH) that there will

 actually exist an analytic set which does not have property B°.

 There is some limit to the analogies that exist between pro-

 perties M and s and properties Br and AFC. It was shown

 in [Sz 37b] that a subset A of R has property M (resp. property

 6) if and only if every homeomorphic image of M in R is

 Lebesgue measurable (resp. of Lebesgue measure zero). Morgan

 [Mo 79] recently showed (without CH) that (1) there exists a set

 AcR which is not Br, but every homeoqjorphic image of A in

 R is B (rei R) and (2) there exists a set BcR which is
 W -

 not AFC, but every homeomorphic image of B in R is 1st cate-

 gory.

 Section VIII: Property (s°) and totally imperfect sets.

 In [Sz 35] Szpi lrajn-Marczewski defined two properties,

 (s) and (s°) for subsets of complete spaces, which exhibit anal-

 ogies with the pairs of properties M and ß and Br and AFC,
 respectively. A subset A of a complete space X is said to

 have property (s) (rei X) if every perfect subset P of X

 contains a perfect subset Q such that either Q <£ A or A fi Q

 is empty. The meaning of property (s)(rel X) is made clearer by

 the following: a subset A of a complete space X fai 1 s to have

 property (s) (rei X) if and only if there exists a perfect set

 PCX such that PDA is half of a "Bernstein subdivision" of
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 P, i.e. both PO A and P - A are TI. It is shown in [Sz 35]

 that the class of subsets of a complete space X with property

 (s)(re1 X) forms a a-algebra which is invariant under operation

 (A). If X and Y are complete spaces, A has property (s)

 (rei X), B Ç Y, and f is a 1-1 bi measurable transformation from

 A onto B, then B has property ( s ) ( rei Y). The conclusion of

 this theorem fails if f is just 1-1 with continuous inverse.

 Note that the previous theorem implies that property (s) is an

 "intrinsic invariant with respect to complete spaces" [Ku 66,

 p. 430], as are properties M and Br> If X and Y are
 complete, A Ç X and B ^Y, then A x 3 has property (s) (rei

 X X Y) if and only A has property (s) (rei X) and Y has

 property (s) (rei Y).

 A subset A of a complete space has property (s°) (rei X) if

 every subset of A has property (s) (rei X). This requirement

 is equivalent to each of the following: (1) every perfect subset

 P of X contain a perfect set Q such that Q fi A is empty).

 (2) A is TI and has property (s) (rei X). The class of all

 subsets of a complete space X which have property (s°)(rel X)

 forms a a-ideal. If X and Y are complete spaces ACX and

 B CY then (1) if A has property (s°) (rei X) and f is a 1-1

 function from A onto B such that f ^ isa Borei function,

 then B has property (s°) (rei Y), and (2) A x B has property

 (s°) (rei X x Y) if and only if A has property (s°) (rei X)

 and B has property (s°) (rei Y). It is shown that for complete

 spaces X,
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 B (rei X)

 (8.1) (s) (rei X)

 M(rel X)

 and

 AFC

 ' n
 (8.2) (s°) n (rei X) - »Tl.

 e ^
 CH implies the existence of a subset of R (the union of a Lusin

 set and a Sierpiński set) which has property (s°) (rei R) but is

 neither Lebesgue measurable nor Br< It follows from previous

 results about properties 6 and AFC that CH implies that

 neither property (s) (rei X) nor property (s°) (rei X) nor

 property TI is preserved under 1-1 continuous transformations,

 nor are they preserved under continuous transformations from all of

 X into X.

 A final result from [Sz 35] we will mention is the following:

 A subset A of a complete space X has property (s°) (rei X) if

 and only if AU B is TI for every TI subset B of X.

 Much of the theory concerning analogies that hold between the

 property pairs M - ß, B - AFC, and (s) - (s°) has been unified,

 into a single theory recently in a sequence of interesting papers

 by John C. Morgan [Mo 76], [Mo 77], and [Mo 78].

 Property TI is clearly not even finitely additive because any

 uncountable complete space X can be subdivided into two Bern-

 stein sets see [Ku 66, p. 514]. However, as we indicated above,

 the union of a TI subset of a complete space X and an

 (s°) (rei X) set will be TI. The property is preserved under
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 1-1 functions with continuous inverses [Ku 66, p. 519], and the

 consequences concerning arbitrary graphs, 1-1 continuous images,

 images under continuous functions from R into R, and dimen-

 sionality which follow from this theorem hold for property TI

 as they did for properties ' and s. The property is obviously

 preserved under taking products.

 Section IX: Interrelationships between the Lusin branch and the

 Sierpiński branch.

 We have already considered the questions of how categorically

 massive it is possible for the sets of the Lusin branch to be and

 of how measure theoretically massive it is possible for the sets

 in the Sierpiński branch to be. We now consider questions of the

 opposite nature. Is it possible for an uncountable set to have

 various properties in the Sierpiński branch and the Lusin branch

 simultaneously? We limit our discussion to the following pro-

 perties for subsets of R:

 (9.1) S A - "AFC

 X ^
 a

 and
 con ^

 ^ Ni
 (9.2) L v + Li * C(v) P v. C * 6.

 ^ C"

 We start with the weakest of the properties in the Sierpiński

 branch, property AFC. It was shown in [Si 34e] (without CH)

 that (8 and AFC) is possible, in [Si 34a, p. 68] (with CH)

 that (C and AFC) is possible, and in [FrTa 80] (with CH) that
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 (P and AFC) is possible. We will see that CH actually implies

 that (C(v) and AFC) is possible. Lusin [Lu 33] showed that there

 is a continuous 1-1 function f from the set Q of irrationals

 in [0,1] into Q which transforms every Lusin subset of Q onto

 an AFC set. CH implies the existence of an uncountable Lusin

 subset M of Q, and f(M) will be (C(v) and AFC).

 On the other hand, it can easily be shown that both (L-j and

 AFC) and (C(v) and x) are impossible. In fact, proceeding with

 consideration of property x, it is clear that (P and x) is

 impossible [Si 38]. But Rothberger showed (using CH) in [Ro 41]

 that (con and x) is possible. We do not know if Rothberger1 s

 example has property C", or whether (C" and x) is even

 possible.

 It is clear from the characterization of property x' in

 terms of concentrated sets given in Section VI that (con and x')

 is not possible.

 The next stage would be to determine whether a (or x') and

 C" (or C or ß) is possible. We do not know how this will turn

 out. It is clear that (s and S) is impossible.

 Section X: Some Applications.

 The theory of the singular sets discussed in this paper has

 been used extensively in the study of the properties of functions

 of a real variable. In fact, the first AFC set, constructed by

 Lusin (under CH) in his early paper [Lul 4] , was used to give a

 counterexample to the converse to Bai re 's theorem to the effect
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 that every Borei measurable function f:X - R has the property that

 if A Ç X, then there exists B £ A, first category relative to A,

 such that f I ( A - B) is continuous (see [Ku 66, p. 403]). Many of

 these applications to the study of properties of real functions are

 discussed in [Si 34a].

 The first author's original interest in the study of these

 singular spaces was due to the role v sets and L-j sets played

 in an extension of Blumberg's theorem about continuous restrictions

 of arbitrary real functions. Blumberg [Bl 22] proved the following

 holds for X = R2,

 (B) for every f : X -* R there exists DçX, 0 dense in

 X, such that f| D is continuous.

 Bradford and Goffman [BdGo 60] proved that (B) holds for a separ-

 able metric space X if and only if X is BC (i.e. no open

 subset of X is first category). The set Û in (B) cannot be

 uncountable even if X = R. In [Br 71], Brown considered the

 following strengthened version of (B):

 (B+) for every f:X + R, there exists an uncountably dense in

 X set W c X and a dense in W set D £"W such that

 f|W is continuous at each element of Û.

 It was shown that (B+) holds for a separable metric space X if

 and (assuming CH) only if no open subset of X is the union of

 a first category set and a v set.

 In studying a "differentiability" version of Blumberg's

 theorem, Ceder [Ce 69] showed that if X is an uncountable subset

 of R, then the following holds:

 (C) for every f:X - R there exists D ç X, û bilaterally
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 dense in itself, such that f| Û is differenti able

 (infinite derivatives must be allowed).

 Then, in [8r 74], Brown considered the following strengthened ver-

 sion of (C) :

 ( C+) for every f : X - R there exists W c X, W bilaterally

 uncountably dense in itself, and a dense subset Û of

 W, such that f|W is differenti able at each element of

 D.

 It is shown in [Br 74] (under CH) that (C+) holds for X C R if

 and only if X is not an L-j set.
 The authors found the theory of singular spaces to be a useful

 tool in studying certain completeness properties of the space

 P(X) of probability measures on X, where P ( X) is endowed with

 the weak* topology.- It is known (see [Pa 67]) that P(X) is

 separable and metrizable if and only if X is, and that P(X)

 is compact (or topologically complete) if and only if X has the

 same property. [Br 77a] and [BrCo 81] unravel the relationships

 that exist between requirements that X or P ( X ) have various

 completeness properties: BC, SBC, and PC (a space is "pseudo

 complete" if it contains a dense topologically complete subspace).

 A v space was used in [Br 77a] as an example to show (under CH)

 that (P(X) BC - ( X BC) (the reverse implication holds). This

 example is improved in [BrCo 81], where an SBC C" space X is

 used to show (under CH) that (P(X) BC)«-f-(X SBC).

 Finally, we mention some recent results that indicate that the

 theory of singular spaces might be involved in the characterization

 of the spaces in which Prohorov's theorem holds. X is said to be
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 a Prohorov space if every compact (in P ( X ) ) set of probability

 measures has a compact set in X which nearly supports those

 measures. Preiss [Pr 73] showed that if X isa coanalytic subset

 of some complete space, then X is Prohorov if and only if X is

 topological ly complete (TC). Then he used (under CH) a "co-P"

 subspace X of the unit interval I (i.e. I-X was P) as an example

 of a (non co-analytic) Prohorov space which is not TC. When

 surveying this result (among many others) Topsile [To 74] used a

 co-v space, which works equally well. However, in an attempt to

 topologically characterize Prohorov spaces, Cox [Co 81c] went in

 the other direction, showing that co-C" spaces suffice for this

 example, and expanded on the C" cover as follows. The mutually

 exclusive pair of sets (X,B) in the compact metric space Z has

 property S means that if for each compact set K c B, {W(K,i)}™_1

 is a sequence of open sets containing K, and for each compact set

 H £ X, is an open set containing H, then there exists a com-

 pact set Hex and a sequence (K^ } of compact sets in B such

 that Z = U"aļ W(K.,i) U UH.
 It is shown there that if (X,B) has property S, then X

 is Prohorov. Furthermore, it is clear that property S isa

 unifying concept between the a-compact sets B (i.e., the top-

 ologically complete X) and the C" sets B (i.e., the co-C"

 sets X).

 In connection with [Br 77a] and [BrCo 81], Preiss showed that

 if X is a Prohorov space, then X is a Baire space, but we do

 not know the category of P(X).
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 FINAL COMMENT.

 The authors apologize for any misinterpretations we might have

 placed on any of the results we have discussed. We also apologize

 for any oversights which may have occurred in our literature

 search in the preparation of this paper. It is interesting to

 note that of the 100 references we have listed which are related

 to this area of research, 45 appeared prior to 1946 and 43 have

 appeared since 1970.

 Department of Mathematics
 Auburn University
 Alabama 36849

 Center for Analysis
 13 Corporate Plaza
 Newport Beach, Calif. 92660
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