Real Analysis Exchange Vol. 7 (1981-82)

H. W. Pu, Department of Mathematics, Texas A&M University, College Station, Texas 77843

A DARBOUX PROPERTY FOR TRANSFORMATIONS

Let X be a euclidean space with metric ρ , X* a separable metric space with metric ρ^* and \mathcal{B} a topological base of connected sets for X such that any translation of any set in \mathcal{B} is still in \mathcal{B} . f: $X \rightarrow X^*$ is said to be Darboux [\mathcal{B}] if $f(\widetilde{U})$ is connected for every $U \in \mathcal{B}$, whenever \widetilde{U} is a set such that $U < \widetilde{U} < \overline{U}$.

Being motivated by the work in [1], the authors obtain in [5] a local characterization of Darboux transformations and a necessary and sufficient condition for a Baire type 1 transformation to be Darboux.

Theorem 1. Let X* be a euclidean space. Then f: $X \to X*$ is Darboux [G] if and only if at every $x_0 \in X$, the following hold:

(i) If $U \in \mathcal{B}$ and $x_0 \in \overline{U}$, then $f(x_0) \in \overline{f(U)}$.

(ii) If $U \in \mathcal{B}$ and $x_0 \in \overline{U}$, then either $f | U \cup \{x_0\}$ is continuous at x_0 or there is a connected set $K^* \subset f(U)$ such that

$$\bigcap_{n=1}^{\infty} \overline{f(S_n(x_0) \cap U)} \subset \overline{\mathbb{H}^*},$$

where $S_n(x_0) = \{x \in X: \rho(x, x_0) < 1/n\}.$

This generalizes a theorem in [2]. The conditions at $x_0 \in X$ are obviously necessary. The sufficiency of the conditions is proved by contradiction. A part for the proof of Theorem 1 in [1] is used.

Theorem 2. Let $f: X \to X^*$ be a Baire type 1 transformation. Then f is Darboux [B] if and only if the property (Z), which is an analogue of a property given by Zahorski [6], is satisfied.

(Z) If V* is open in X* and $x_0 \in f^{-1}(V^*)$, then

 $\mathbb{U} \cap f^{-1}(\mathbb{V}^*) - \{x_0\} \neq \emptyset$ for every $\mathbb{U} \in \mathcal{B}$ with $x_0 \in \overline{\mathbb{U}}$.

The necessity follows from the definition. The sufficiency can be obtained with the aid of Theorem 2 in [1].

A result concerning approximately continuous transformations by Goffman and Waterman [3] and a result on the derivatives of interval functions by Neugebauer [4] may follow from Theorem 2 above as special cases.

References

- 1. A. M. Bruckner and J. B. Bruckner, Darboux transformations, Trans. Amer. Math. Soc., 128 (1967), 103-111.
- A. Csázár, Sur la propriété de Darboux, C. R. Premier Congrès des Mathématiciens Hongrois, pp. 551-560, Akademiai Kiado Budapest, 1952.
- 3. C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc., 12 (1961), 116-121.
- 4. C. Neugebauer, Darboux property for functions of serval variables, Trans. Amer. Math. Soc., 107 (1963), 30-37.
- 5. H. W. Pu and H. H. Pu, Darboux property for transformations (to be submitted).
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69 (1950), 1-54.

Received June 17, 1981