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 On Strong Essential Cluster Sets

 1. Let H, R and M* stand for the open upper half plane, real

 line and Lebesgue outer measure, respectively. M* is linear or

 planar; the choice will be clear from the context. Let L(x)

 denote the ray in H emanating from xtR in the direction ir/2 and

 let L(x,r) be a segment of L(x) with one end at x and of length r.

 Let {1} be the collection of closed rectangles of the form

 [a,b]x[0,k], a<0<b, a, b and k are rationals. For Ie{I} let I(x.)
 (3

 denote the closed rectangle obtained by mapping (x,y) into

 (Xq + x, y). The strong outer upper density of a set E<=H at x is

 defined by

 d*.(E,x) - limfsup M : lítí}} s D(I)<l/n M (IU,)

 where D ( I ) denotes the diameter of I.

 The directional upper outer density of a set E«=H at x in the

 direction j is defined by

 d*(E,x) = lim sup M*(E/?L(x,r) )
 r+0 r

 In particular, if the sets concerned are measurable then M* and d*

 will be replaced by M and d, respectively.

 Let f : H-4J, where W is a topological space. The strong

 essential cluster set Cs(f,x) of f at x is the set of all weW
 such that for every open set U of W containing w , d* (f ^(U),x)>0.
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 The definition of the directional essential cluster set

 Ce(f,x,ir/2) of f at X in the direction ir/2 is similar, with

 d*s replaced by d*.

 2. O'Malley [1] proved that if f: H-*R is measurable, then for all

 but a measure zero set of points x in R,

 Cs(f,x) = Ce(f,x,n/2)

 If further f is continuous, then for all but a first category set

 of points x € R,

 Cs(f,x) = Ce(f,x,n/2) .

 In this note we have studied the relationship between C0(f ,x ,n/2)

 and C$(f,x) for arbitrary functions and for functions of Baire type 1.

 3. Now we shall prove the auxiliary lemmas for our results.

 Lemma 1. Let E H be measurable. Then the set

 B(E) = {x : xeR,"3s(E,x) <ïï(E,x)}

 is of measure zero.

 Proof: For a fixed positive integer n and positive rational s

 d, q and r with p < q and /2r < -jļj- let

 B = {x . ÜÍIkME) < H p < q M < H(L(x.ryiE) npqr M(I(x)) - p H q M - r

 for all U{1}> D ( I ) < ķ

 Then B(E) is contained in the countable union of all the sets

 8 npqr'
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 If possible, let ç £ Bnpqr be a point of point of density of

 the set Bnpcļr. Then for e , 0 < e < there exists n,

 o < n < r/2, such that

 M(ç-h, ç+ h)nBnpqr)
 2h > 1 - £

 for all h < n.

 Let h be a rational such that 0<h<ii, and set

 [-h,h]x[0,r] - I'. Then D(I') < ^ and

 M( I ' (ç) E) > /M(L(x,r)flE) dx
 (ç-h,ç+h)/lBnpqr

 > 2qr(l-e)h = q(l-e)MI'(ç) .

 Since q(l-e) > o, this is a contradiction to the fact that Ç€B_ .
 npqr

 Hence each of the sets is of measure zero, and the proof r is npqr r

 complete. (Lemma 1 is also proved in [1], but the proof above is

 more elementary).

 Lemma 2. Let K H be arbitrary. Then the set

 B*(K) = {x:I*s(K,x) < d*(K,x) }

 is of measure zero.

 Proof. Let EC H be a measurable cover of K such that

 M(EflQ) = M*(KflQ) for each bounded measurable set QcH. Then

 B*(K)cB(E) U T(E) ,

 where B(E) is the set in Lemma 1 and T(E) is the measure zero

 set of all xéR at which L(x)/ļE is non-measurable. By Lemma 1,

 B(E) is of measure zero, and the proof is complete.
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 Lemma 3. Let E H be aņ Fjset. Then the set

 C(E) = {x:ds(E,x) < d(E,x)}
 is of the first category.

 oo

 Proof. Let E = U F. z , where Ff z is a closed set for each t=l z z

 t. For fixed positive integers n, k and positive rationals p, q

 and r with p < q and Jīr < - let
 n

 c - [;c- M(I(x)nE) <0<a<M(L(x,r)nEk) P q f
 nkpqr - [;c- M(l(x)) - P q

 I ( (H, D (I) < ,

 where E. = U F.. Then C(E) is contained in the countable
 K t=l 1

 union of all the sets C^pq^

 If possible, let be dense in an interval (a,b)<=R.

 Then since E^ is a closed set and for x€ Cnkpqr we have

 M(L(x, r)f) Ej
 r -

 it follows that for all xe[a,b]

 M(L(x,r)D E. )
 r - q M

 Let x'£ (a,b)fi Cnķpqr- Let y be a rational such that

 0<y«£ and [x'-y, x-'+y]c(a,b) . Let I' = [-y,y]x[0,r] .

 Then D( I ' ) < -^ n and M(I'(x')nE.) K = /M(L(x' ,r)OE. k ) dx n K (x'-y, x'+y) k

 1 2qry = M(r(x'))q
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 i.e.

 M(I'(x')nEk)
 - q *

 This is a contradiction to the fact that x'€ C . . Hence
 nkpqr .

 each of the sets Cnķ is no-where dense and by (2) the set

 C(E) is of the first category.

 Theorem. If f : H -*■ W j[s arbitrary, where W i_s £ second

 countable topological space, then except for à measure zero set

 of points X in R

 Ce(f,x, |)CCS (f,x)

 If further f 21 of Bai re type 1 then the exceptional set

 is also of first category.

 Proof. Let B = {Vn> be a countable basis for the topology

 of W. Let En = f_1(Vn) and

 P = {x : x«R, Ce(f,x,|) <£ Cs(f ,x) }

 Let x'£ P. Then there is a w'ć Cg ( f ,x ' ,-|)'Cs(f ,x 1 ) . Since

 w'* ce('<r>x ' »"^) and w' ¿ Cs(f,x') there is an n' such that

 čí* ( En , , x ' ) >0 and ïï*s ( En , ,x ' ) = 0. Hence x'£B(En,), where

 B(En) = {x : d*(En,x) > d*s(En,x)}

 Thus it is proved that
 00

 P<r U B(E )
 n=l

 If f is arbitrary, then by Lemma 2 each of the sets B(En)
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 is of measure zero and hence P is of measure zero. Again if f

 is of Bai re type J 1 then each of the sets E„ is an F set and J n a

 B(En) = C(En) of Lemma 3. Now by Lemma 3 each of the sets

 C(En) is of first category and hence P is of the first category.

 This completes the proof.

 Remark : O' Mai ley has constructed an arbitrary function in

 ([1], Example 4) for which the containment in the statement

 of the above theorem is proper for each x R. Example 3 in

 [1] also ensures that the exceptional set in the first part

 of the above theorem cannot be of the first category.

 Question: Could the containment in the second part of the

 theorem be replaced by equality?

 The author is thankful to the referee for his useful comments.
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