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 SECTIONWISE PROPERTIES AND AVERAGING PROCESSES

 The material presented here is based on two papers of

 ours jointly written with M. Laczkovich / Cl.lļ r 0^3 / •

 1. Let ¥ and G be function classes on Qo,l] .

 Vře denote by the class of functions f defined on

 Q = [o,llx[p,l] with the property

 f y and f^ £ *3-

 for every x,y€ Co,l] that is all the horizontal sections

 f^OO = ^Cx'ï0 belong to 9- and all the vertical sections

 f (y) = f (x,y) belong to Ç .
 We deal with the measurabiliy

 properties of '^'XÇ where ^ and Ç run through the
 following classes defined on £o,ļJ :

 C = c£o,ļ3 = {f ; f is continuous^- ,

 A = ļf ; f is approximately continuous]- ,

 b^À. = {f ; I f i - 1 and f is a derivative} ,
 A = {f ; f is a derivative} ,

 = "if ; f is Darboux Baire 1^ ,

 3)^ : the a 'th class of Baire, c* = 1,2,... .
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 We also use the notation for the Baire classes of

 functions defined on Q . }A. denotes the class of Lebesgue

 measurable functions on Q .

 The following chart makes easy to look through the

 measurability results.

 C A I bxA A Î)1 H>2
 ~ *1 *iK ^2 *2 *2
 A ļ ,12| ^2 1>2 ' [ 1>2 *
 bl^

 A

 S^%1 * -

 '

 " indicates that the corresponding classes ^
 contain non-measurable functions .

 The reader should realize that our classes are listed

 in increasing order apart from the independent classes J{.

 and bļA . It is obvious that a measurability property of

 '*3- X ^ also holds for if only 7'<C 3r , C^' CL Cļ .

 Comments on the chart

 Ci) CxCC and, in general, C- 3>^+i is a
 piece of classic due to Lebesgue, L~1 / §27, V. Théorème 2,

 p. 285.
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 (ii) C *b jA O Tb ļ might possibly be known. We could not find
 a reference and hence a simple proof is provided as follov.-s.

 Actually I prove here C , slighty stronger result

 then in [11] / bA denotes the class of bounded derivatives/. Let
 f €-C*b£x and put y

 F(x,y) = ^^fx,t)dt C(x,y)£Q) ,
 O

 where f = min [n, max(f,-n)3 (n=l ,2 , . . .
 It is immediate by Lebesgue's convergence theorem that the

 sections are continuous. On the other hand, the sections

 (Ov X are uniformly Lipschitz 1 functions and these imply the n X

 continuity of Fn on Q . For any fixed x f = f , if n
 is large enough and hence

 f(x,y) = lim n(F^x,y + |) - F(x,yy)
 n oc

 is Baire 1 on Q .

 (iii) If , then ^ arctg f £ C*b and
 hence f€3^ . /Vie used here the fact that bounded approxi-
 mately continuous functions are derivatives Clļ p. 21. /

 (iv) C* A C CxoDli^C and
 follows by (i) and hence the assertions in the first row

 are verified.

 (v) vas proved by R.O. Davies [2j.

 i>2 is proved in [9ļ and this implies everything
 in the second row apart from * .

 i-j'

 (y i) If 2 o = Kļ then there exists a non-measurař le
 function in Jx. * • A construction can be found in
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 Theorem 11 and [4] , Theoreme 3. The authors of these papers

 claim only the Lebesgue measurability of the sections f ,

 but their constructions actually give Baire 2 functions. We

 do not know whether the continuum hypothesis is necessary

 for crč *^>2 ^ *
 / v

 (vii) bļAxbļ&c3?>2 ^ue to z- Grande l[ß~', Theoreme

 3/. The stronger assertion bjA *■ ^ ^ ^2 -"-s cortained in
 [93.

 (viii) All the stars in the last column follow from

 (vi) . In fact, if f€^jtx"Ī>2^ ~ then - arctg f €
 € (b^A x ï^) - vH. C . . . C. (CB 2x^>2^ ~ t^iese relations
 i • -Z1 o 1/

 relies i • upon 2 = •

 (ix) A X X was proved by M. Laczkovich in DQ •

 We do not know whether or not stronger measurability prop-

 erties /e.g. AxA d 3b 4/ hole in the fourth row.

 (x) 5D J* 5) ļ <£■ is a theorem of J.S. Lipiński
 [10]. This implies all the remaining stars in the chart. We

 remark that the first result in this topic is a theorem of

 Sierpiński stating "3 / P- 147./. It is

 remarkable that Lipiński 's counterexample is sectionwise

 approximately continuous with at most one exceptional point

 for each section. The sharp contrast between this fact and

 jk >• A C-Îj 2 shows that the two dimensional measurability very
 delicately depends on those of the sections.
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 (xi) As we mentioned above, it is not known whether

 in the fourth row we have sharp results. On the other hand

 all the positive results in the first three rows are sharp.

 was proved by Davies l[2' , Theorem 2/. He con-

 structed a bounded function, thus he also proved Axb^Ac.3^
 and 4- • Thus the second and the third row can

 not be improved.

 (xii) 3^ was shown by Z. Grande / £53,
 Theoreme 3/. The only gap remained to fill up is to show

 Cx A 4- . The construction to prove this, is the bulk

 of [11] . -

 Our result is stated in the following

 Theorem. There exists a function f(x,y) defined on

 the unit square Q such that the section f^ is continuous

 for every y €[0,1] , the section f is a derivative for
 A

 every x€ and f does not belong to the first class

 of Baire.

 The details of the proof are of course omitted here.
 We represent our function f as a sum f - g+h

 where g and h satisfy the following properties.

 (l)g 9y is continuous for every y€Co,lļ ;

 (ß)g the function

 f 9xCy) if YtX
 g;(y) = i

 (_0 if y=x
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 is a derivative for every x € [jo,l] ;

 Î1 O otherwise if x = s^ ; (k=l,2,...) , O otherwise ;

 i» «s CO

 where is a suitable sequence everywhere aense in

 [0,1] !

 CO h is continuous for every y €[0,13 >
 o o

 (2)h If x£[[0,ll - {.s]3>r=i then the section hx
 is a derivative. Furthermore, the function

 f h^Cy) if vis,.

 [l if y=sk
 is £ derivative for every k=l,2,... ;

 (3)^ h(x,x) = O for every x£[p,l1 • Having these
 ĆL0 f

 properties above, the function f = g+h obviously has

 the required continuous and derivative sections, respectively.

 Since

 1 if x=sk (k=l,2,...) ,
 f(x,x) = A

 J O otherwise

 and {.sy^]c=i everywhere dense in LP'^l / f can not be
 a Baire 1 function.
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 2. Averaging processes. Let (1) be a class of real valued
 functions defined on an arbitrary set X f <p . The simplest

 way to form averages of elements of <^) is taking weighted
 arithmetical means

 iti*1*1 =
 The family of all such finite sums is the convex hull

 of §>

 We can extend the averaging process by considering

 all sums of form

 O O / oo '

 2r^oLífí ( = 1 ' <*1^° ' V •
 /We denote by || f j| the sup norm of f ./ If (1) is a
 vector lattice /with the usual pointwise operations/ tŁen

 it is easily seen that the family of all such infinite sums

 is the uniform closure of ^ .

 Instead of summation we may also consider integrals

 and this leads to a more general averaging process as follows.
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 Definition 1. Let P = be a probability

 space and let F : X K S R . This function F is said

 to be admissible /for an averaging process concerning the

 class 0 / if
 (x) F is bounded,

 (ii) for any fixed scS , f(. ,s)£(^,
 (iii} for any fixed xćX , F^x, . ^ is measurable

 on S .

 In this case

 f(x) = ^ F{x,s)ā ¡Xls) (x£x)
 S

 is meaningful and the average function f is represented

 by P and F .

 Definition 2. For a given (1) the set of all possible

 averages is denoted by (^pa .

 /We could further generalize the averaging method,

 if integration with respect to finitely additive measures

 were allowed. This kind of averaging, however, would yield

 to an over- abundant collection of averages as shown by

 Remark l. /

 Our aim is to study the class 3 .

 Dealing with the averaging process described by Defini-tion 1,

 we always consider classes consisting of bounded functions

 only.
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 The relations (ļ? c a and

 §c.y z=p <1>ac*va

 are obvious. Natural questions arise like these:

 1. For a given how can we characterize (^)a ?

 2. How large can <^a be compared with (1; ?
 3. What conditions imply

 4. What conditions imply <^)a = (^)aa ?

 These of course are too general to be answered completely.

 Some of the details are answered in this paper and many

 open problems are raised in the last section.

 Here are some instructive examples .

 A/ Let X be a metrisable space and let dencte

 the family of bounded continuous real valued functions on

 X . Then . This is an easy consequence of Leb>esgue's

 convergence theorem.

 B/ Let X be a compact metric space and let denote

 the set of bounded Baire 1 functions on X , cļ) = bî)1 .
 Then again . This is rather difficult to prove

 /see [91/.
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 C/ Let X = an<^ 1 e ^ c^ass bounded

 Baire 2 functions on [o,l] . Then (ļ> a is the set of all
 bounded real functions on [o,lļ. Assuming the continuum

 hypothesis there exists a set S C such that
 all horizontal sections are countable and all vertical

 sections have countable complement [15]] . Given

 an arbitrary function 0 £ f (x) ^ 1 we delete from S the

 segments ^(x,y^ : f (x^ y ^ l^ and obtain a subset S'
 such that the horizontal sections are /at most / countable

 a fortiori. Therefore its characteristic function F(x,y) =

 = y2^/(x/y) is Baire 2 for every fixed y , and

 r f(x) •
 J r F(x,y")dy = ^ F (x,y)dy • = f(x)
 0 0

 since F^x,y) = 1 almost everywhere on the segment

 ^(x,y}; O ^y£ f (x) ļ . We prove this assertion on a
 without CH , but we need some machinery developed later .

 Averaging and uniform approximation. Our main

 result in this section is Theorem 7 which states that an

 average f Ç(J)a can always be represented by a suitable
 admissible function F such that ļļ F H <Mļf II + £ •

 Lemma 3 . Let (1) be a linear space and let f € a /
 that is

 f(x} = ^ F(x,s)d u (s) (X^x) *
 S '
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 Then there exists a probability space (t, v) and for every
 £ > 0 , <^* >• O there exists an admissible function

 F p : XXT such that
 C /4

 (ii) f(xļ = S F€tç(x't)ã (XÍ3Ò '

 (iii) y(ļtGT ; Ffc.^(x,t) > ''f ļ' (l+ <f)ļ) < i
 for every x 6 X .

 Theorem 4. Let Cļ) be a vector lattice and let
 f £ (ļ> a and ^ >0 be given. Then there exists a g (ļ)a
 such that

 (i) lU-giK^,

 (ii) g(x)= ^ G(x,t) d y (t) (xéX^ ,
 T

 where G is admissible and '' G ]' ^ ]ļ f JJ .

 Lemma 5 . Let (1) be a class of functions containing

 the constant multiples cf for each f é (fy and real c .
 Let the sequence f £ (ļ? a be given such that

 fnW = § Fn(*'s}āļXn( ^ (X^x' n=l,2,...^. ,
 n
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 where H fJ| £ M n and o¿ = Then
 n=l

 oO

 f = 21 f č.(ļ)a # moreover
 n=l n r

 f(x) = ^ F (x, s)d M [s) (xéxj ,
 S •

 whrre Ö F ļļ o< .

 Corollary 6. If contains the constant multiples

 of its elements, then a ünear space.

 Theorem 7 . Let (J) be a vector lattice on X , f 6<ļ)a
 and £ > 0 . Then there exist a probability space (t, v)
 and an admissible function F : X X T - > R such that

 f(x) = ^ F&/ť)d V(t) (x€X*)
 T

 and

 lMkl|f||*£ •

 Theorem 8. If (1) is a vector lattice, then £^)a
 is a uniformly closed linear space.

 It was observed by A. Bárdossy that our method actually

 proves that Cļ)a is a uniformly closed vector lattice.
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 The universal representation.

 Theorem 9. Let (1) be a given vector lattice on X .
 Then there exists a universal measurable space (jQ ,Jh)

 and a universal function FQ : X R such that

 {1 F© 'i ^2 and for every f^4>a , ļļf^ļ^l there exists

 a probability measure jjl on "ot" giving the representation

 f(x) = dyu(co) (xéx) .
 i"L

 Averages and other operations. In this section

 we introduce some other extension operations defined on

 an arbitrary family of functions.

 Definition 10. Let Ć£) be an arbitrary class of

 functions defined on X . We denote by (ļp U the class
 of limits of sequences from Cļ) uniformly convergent

 on X . Furthermore (j)° consists of all functions f
 defined on X such that for every countable subset

 HCX there exists g € Cj) with f|H = g.|H •
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 Lemma 11.

 (i) For any (ļ) , (ļp C (J)U (1)° •
 (ii) For any (1) c. , (£)Uc^U and <£)°dp° •
 (iii) For any (ļ) / (|}UU = (1}U and <ļ> °° = 4>° •
 (iv) If <ļ> consists of bounded functions, then the

 same holds for (^) u and (£)° .

 (v) If (ķ is a linear space, or a lattice, or a
 vector lattice, then the same property holds for both

 (£) u and (ļ) ° .

 The easy proofs are left to the reader.

 Lemma 12 . If (£) is a vector lattice, then
 i uou L uo

 Ç> i uou <P L uo •

 Corollary 13. If (D is a vector lattice, then

 W (ļ)ODC^UO,
 (ii) (ļ) uouo =(-ļ^uo , that is operation "uo" is

 a closure operation for vector lattices.

 Lemma 14 . If Y r 0 is an arbitrary set and is
 oc

 an arbitrary system of subsets of Y such that Y - U HR î Ģ
 for every sequence from ^ , then there

 exists a 6" -field ^ and a 0-1 measure JUL o~
 with Já( y) = 1 and ļd. (e) = 0 (fié %) •
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 Theorem 15. For an arbitrary class of bounded

 functions we always have •

 Theorem 16. If Cļ) is a vector lattice of bounded

 functions# then (^) a- >ç1)OU .

 Remarks and problems.

 1. As it was mentioned in the introduction, averaging

 with finitely additive measures results in too many averages.

 Namely , we prove that if (£) is a vector lattice separating
 the points in X then every bounded function is an average

 with respect to a finitely additive measure.

 Theorem 17. Let Cļ} be a vector lattice of functions
 defined on X and suppose that separates the points

 in X . Let be an arbitrary bounded function on X .

 Then there exists a set S ^ 0 , a finitely additive 0-1

 measure yuL defined on all subset of S and a bounded
 function F : X x S - ^ R such that for any s£S F^. /S^^
 and for any x€: X ,

 ļJifr ; = F(x,s^ = 1 .
 «

 2. Theorem 18. There exists a vector lattice

 on a countable set X such that u is a strict

 subclass of (£) a .
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 It should be noticed that since X is countable,

 operation "o" does not affect any class defined on X ,

 hence our theorem also shows that (^)UO = (Qa can not

 hold in general. In particular, the inclusion (^) °Uc (t/3
 in Theorem 16 can not be improved to equality.

 3. Let = b denote the family of bounded

 approximately continuous functions on [O.lļ . As an

 application we prove (ļ) a = b&^" . Indeed, it follows
 immediately from Theorem 2.2 of [131 that any bounded
 Baire 1 function restricted to a countable set can be

 extended to get a function in ćjp . That is <^)°Ob3^ ,
 and by Theorem 15, (1) a3 bŁ^" also holds. On the other-

 hand, (1) c b3S^" implies ad^b^>^a = bj^ / see ļVļ ,
 Theorem 2 / .

 We remark, that a = bL^" holds also if (£> is
 the class of bounded derivatives, = b A / or the class

 of bounded Darboux Baire 1 functions (j) = b5)^bļ • This
 is obvious from bc/b ^ b^ C. b<2) 3b b!£}^ •

 4 . Problems.

 ^i^ What conditions on ^ imply (1} UO = (1) OU ?
 We know no examples of vector lattices where this equality

 fails to hold.
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 (ii^ Determine (£) a if

 (]p = ^ functions of bounded variation on or

 (|) = ^ bounded functions which are continuous on [0,lļ

 with at most countably many exceptional points^ļ .

 (iii^ Is <^) aa = (|) a true for any vector lattice

 (^) ? If not, then can the sequence a cl cļ)aaC* • •
 strictly increasing?

 ^iv^ Is the weaker equality ao = (1) a / or

 (^)oa =(^)a , or (£)ua =(ļ)a true for all vector lattices?

 /<^) aU = (£) a holds true , according to Theorem 8 . /
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