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SECTIONWISE PROPERTIES AND AVERAGING PROCESSES

The material presented here is based on two papers of

ours jointly written with M. Laczkovich /[11], (12]/.

1. Let ¥ and G be function classes on [0,1] .
We denote by 'S'-'xcé the class of functions £ defined on

Q = [O,l]x[o,l] with the property
£,€G anc f£e¥F

for every x,y€ [0,1] that is all the horizontal sections
fy(x)' = £(x,y) belong to F and all the vertical sections
fx(y) = £(x,y) belong to 5 .

We deal with the measurabiliy
properties of ?’x(; where ¥ and g run through the

following classes defined on [0,1] :

= cfo,1] = {£ ; £ is continuous} ,

X = {f ; £ is approximately continuous} ’

o
>
n
~n
Hh

|[fi € 1 and £ is a derivativej ,
A={f; £ is a derivative} ,
@fbl = {f ; f is Darboux Baire l} ,

3)0( : the o'th class of Baire, « = 1,2,...
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We also use the notation B, for the Baire classes of
functions defined on Q . M denotes the class of Lebesgue
measurable functions on Q .

The following chart makes easy to look through the

measurability results.

C £ | bAl A DZBl 31 5
c | By Bid | B, B 2 T’3
A 3, ’bz 2\’:2 3)2 3:2 %
blA sz 32 TDZ ?_)2
A Ml M M %
g)?;l P % 3
Tbl
3, p

indicates that the corresponding classes gfx(g
contain non-measurable functions.
The reader should realize that our classes are listed
in increasing order apart from the independent classes }{
and bIA . It is obvious that a measurability property of

FxG also holds for '}"xCé' if only T'c¥ , CA'C—Cé'

Comments on the chart

LJ.) CxCC 3’31 and, in general, Cx’.Bo(C'.B“_*_l is a
piece of classic due to Lebesgue, [7), §27, V. Théoréme 2,

p. 285.
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(ii) belAc'Bl might possibly be known. We could not find

a reference and hence a simple proof is provided as follows.

Actually I prove here C beC%l , slighty stronger result

then in [11] /bA denotes the class of bounded derivatives/. Let
f eCxbA and put y

Py = (gxi0)a (xeQ),
where f = min [no, max (£,-n)] Cn=l,2,...) .
It is immediate by Lebesgue’s convergence theorem that the
sections (Fn}y are continuous. On the other hand, the sections
'(Fn)x are uniformly Lipschitz 1 functions and these imply the

£, if n

in

continuity of F,  on Q . For any fixed x fn

is large enough and hence
f£G,y) = lim n(Fx,y + %1-) - Pn(x,y))

N—->«

is Baire 1 on Q .

lAC:bl and

hence felBl . /We used here the fact that bounded apprcxi-

(1ii) If fe Cxdt , then T%arctg £ € Cxb

mately continuous functions are derivatives l:l] p. 21./

Av) cxAccxdB ccxB,©B, and CxBH,< 3,
follows by (i) and hence the assertions in the first row

are verified.

(v) A xH R was proved by R.0. Davies [2].

2
Fx fBlC 352 is proved in [9] and this implies everything

in the second row apart from ¥#.

. Ho ’ . R
(vi) If 2 =hl then there exists a2 non-measurar_.e
function in ﬁx'ﬁz . A construction can be found in [3]
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Theorem 11 and [4], Théoreme 3. The authors of these papers
claim only the Lebesgue measurability of the sections fx ,
but their constructions actually give Baire 2 functions. We

do not know whether the continuum hypothesis is necessary

for o'-'tﬂ:Bzﬁt-M».

/ N
(vii) ble blAC:Bz due to Z. Grande /[6], Theoreme

3/. The stronger assertion ble'.T:\lC 32 is cortained in

[9].

(viii) All the stars in the last column follow from

(vi). In fact, if fe(af’(x'.Bz) -M then 2 arctg f €

1Y

€ (by& » 532) - :,\’L C...c (B 5% 332> - M . R1l these relations

relies upon 2 ° =Hl .

ix) A x fE;lCJ“L was proved by M. Laczkovich in [8].

We do not know whether or not stronger measurability prop-

erties J/e.g. Ax A C 354/ holé in the fourth row.

(x) @%lx®3l¢ﬂ is a theorem of J.S. Lipifski
[10]. This implies all the remaining stars in the chart. We
remark that the first result in this topic is a theorem of
Sierpinski stating 351X331¢-\M, /[14], p. 147./. It is
remarkable that Lipiﬁski's counterexample is sectionwise
approximately continuous with at most one exceptional point
for each section. The sharp contrast between this fact and
a&x&C:bz shows that the two cimensional measurability very

delicately depends on those of the sections.
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(xi) As we mentioned above, it is not known whether
in the fourth row we have sharp results. On the other hand
all the positive results in the first three rows are sharp.
dkx&ct:ﬁl was proved by Davies /[2)}, Theorem 2/. He con-
structed a bounded function, thus he also proved &x blACTBl
and bAxb A ¢ ¥, . Thus the second and the third row can

not be improved.

(xii) CxéDBl(t 31 was shown by Z. Grande /[5],
Théorc\ame 3/. The only gap remained to fill up is to show

CxA & ‘351 . The construction to prove this, is the bulk
of [11]. .

Our result is stated in the following

Theorem. There exists a function f£(x,y) defined on
the unit square Q such that the section £¥ is continuous
for every yefo,l] , the section fx is a derivative for

every x€ [0,1] and £ does noi: belong to the first class

of Baire.
The details of the proof are of course omitted here.
We represent our function £ as a sum £ = g+h

where g and h satisfy the following properties.

CQg gy is continuous for every y€[0:1] i

@) g the function

9,(y) if  y#x
9;(y) =
o) if y=x
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is a derivative for every x€([0,1] ;

Of

1 if x=s  (k=1,2,...) ,

g(x,x) =
(0] otherwise ;

[Se) - .
where {s£§k=l is a suitable sequence everywhere dense 1in

[o,1] ;
(l)h hY is continuous for every yé[O,l] ;

©
(Z)h 1f xefo,1] - {Sk}k=l then the section h,

is a derivative. Furthermore, the function
i +
h, (v) if  v#sy
k.
1 if y=sy
is & derivative for every k=1,2,... :

(3)h h(x,x) = 0 for every xé€[0,1] . Having these

properties above, the function £ def

g+h obviously has
the required continuous and derivative sections, respectively.
Since

| 1 it ox=s,  (=1,2,...) ,
f(x,x) =
O otherwise

o0 -
and {sk§k=l is everywhere dense in LO,l] , I can not be

-

a2 Baire 2 function.
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2. Averaging processes. Let qD be a class of real valued
functions defined on an arbitrary set X # @ . The simplest

way to form averages of elements of dp is taking weighted

arithmetical means
>
< %%

n @)
< ;d.=1,di;o,fie .

i=1 *

The family of all such finite sums is the convex hull

of ¢>

We can extend the averaging process by considering

all sums of form

o0 : oo
,i%locifi %xi:l , X,>o0, fi€d> Mgl < K>.

[We denote by “ f“ the sup norm of £ ./ If q> is a
vector lattice /with the usual pointwise operations/ then
it is easily seen that the family of all such infinite sums

is the uniform closure of QD.

Instead of summation we may also consider integrzls

and this leads to a more general averaging process as follows.
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Definition 1. Let P = (S,f%,/()_be a probability
space and let F : XXS ->R . This function F is said
to be admissible /for an averaging process concerning the
class Cp | if

(i) F 1is bounded,

(ii) for any fixed sé&s , F(.,s)éq),

(iii) for any fixed xe&X , F(x,.) is measurable

on S .

In this case

£ (x) 'e'S\F(x,s\d /.1(5\ (xex)

3 .

is meaningful and the average function £ is represented

by ¢ and F .

Definition 2. For a given 4) the set of all possible

averages is denoted by q)a .

[We could further generalize the averaging method,
if integration with respect to finitely additive measures
were allowed. This kind of averaging, however, would yield

to an over-abundant collection of averages as shown Lv

Remark 1./

Our aim is to study the class ¢a .
Dealing with the averaging process described by Defini*ion 1,

we always consider classes q> consisting of bounded functions

only.
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The relations (P C(l)a and

a a
(\)C\\/ = ey
are obvious. Natural questions arise like these:

l. For a given (b how can we characterize ¢a ?
2. How large can <Pa be comnared with q ?

3. What conditions imply @ = Cba ?

4. What conditions imply q)a = cbaa ?

These of course are too general to be answered completely.
Some of the details are answered in this paper and many

open problems are raised in the last section.
Here are some instructive examples.

A/ Let X be a metrisable space and let d) dencte
the family of bounded continuous real valued functions on

X . Then (\) a - C\) . This is an easy conseguence of Lebesgue’s

convergence theorem.

B/ Let X be a compact metric space and let (P denote

the set of bounded Baire 1 functions on X , (P = b?)l .

Then again CPa = ¢ . This is rather difficult to prove
| see \;9.}/.
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c/ Let X = [O,l\\ and let (b be the class of bounded
Baire 2 functions on [0,1] . Then Cp 8 is the set of all
bounded real functions on \_O,l] Assuming the continuum
hypothesis there exists a set S C\_O,l])(‘O,ﬂ such that
all horizontal sections are countable and all vertical
sections have countable complement [15]. Given
an arbitrary function 0 £ £(x) €1 we delete from S the
segments <{(x,y) : £(x) < Yy< 175 and obtain a subset S’
such that the horizontal sections are /at most/ countable
a fortiori. Therefore its characteristic function F(x,y) =

= /Z/S,(x,y) is Baire 2 for every fixed y , and

1 £ (x)
S F(x,y)dy = S F(x,y)dy = f(x)
0 0 )

since F(x,y) = 1 almost everywhere on the segment
%(x,y); o] éyé_ f(x')I{ . We prove this assertion on ¢a

without CH , but we need some machinery developed latsr,

Averaging and uniform approximation. Our main

result in this section is Theorem 7 which states that an
average f Gq)a can always be represented by a suitakle

admissible function F such that [|[Fl| <{fj+ & .

Lemma 3. Let Cb be a linear space and let f€d> a,

that is

£(x) = S F(x,s) d/u(s) (xéx.) .
S
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Then there exists a probability space (T, V) and for every
E>o0, S> O there exists an admissible function

F : XXT =R such that
&,8

1) 7 5 I <z -
(i1) £(x) = é Fg,gCerE)d D(t) (xex) ,

(iii) v({t.GT P Feg (x,t') > \\f\\(1+5)§> < &

for every x€X .

Theorem 4. Let qD be a vector lattice and let

fé(ba and M >0 be given. Then there exists a g«< q)a

such that
(1) Ne-gli<m,
(i1) g(x)=SG(x,t)d y(£) - <xex§ '
T

where G is admissible and “G“é “f” .

Lemma 5. Let d) be a class of functions contairing
the constant multiples <c¢f for each £ & Ct)and real c .

Let the sequence fné ¢a be given such that

fn(x) = § Fn<x,s)d/un(s$ (xéx, n=l,2,...\_ )

n
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where || F || £ X  and o = 2 ¢ <22, Then

n=1
Vo)
f = Z f €02 , moreover

n=1 " (p

f(x) = gF(x,s)d[l (s\ (xéx_) ’

where [[F]| £ & .

Corollary 6. If ¢) contains the constant multiples

of its elements, then q>a is a linear space.

Theorem 7. Let CP be a vector latticeon X , £ ed}a

and &£ > O . Then there exist a probability space (T, V)

and an admissible function F

: XXT — R such that

£(x) = S F(x,t)d y(t) (xex)
T
and

I ell<ell+ € .

Theorem 8. If q) is a \?ector lattice, then (ba

is a uniformly closed linear space.

It was observed by A. Bardossy that our method actually

proves that q>a is a uniformly closed vector lattice.
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The universal representation.

Theorem 9. Let CD be a given vector lattice on X .

Then there exists a universal measurable space (ﬂ,ﬂ.’>
and a universal function F, : X xQ - R such that

a
fr | £2 and for every £ edb?, “f“ 41 there exists

a probability measure /J. on 'aoc‘ giving the representation

f(x) = SFo(x,w) d/.t (w) (xéx) .

0

Averages and other operations. In this section

we introduce some other extension operations defined o

an arbitrary family of functions.

Definition 10. Let Cb be an arbitrary class of

functions defined on X . We denote by (b Y the class
of limits of sequences from ¢ uniformly convergent
on X . Furthermore q)o consists of all functions f
defined on X such that for every countable subset

Hc X there exists g € q) with le = g}H .
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Lemma 11.

(i) For any Cb ’ (b C d}un (bo .

(11) For any pecly s PUcy" ama p°=y° .

(iii) For any @ , HM =H" ama $° = H° .

(iv) If @ consists of bounded functions, then the
same holds for (" and H° . |

(v) I1f ¢ is a linear space, or a lattice, or a

vector lattice, then the same property holds for both
dpu and q)o .

The easy proofs are left to the reader,

Lemma 12. If d;) is a vector lattice; then

d?uou - Cbuo .

Corollary 13. If CP is a vector lattice, then

(i) Cbouc Cbuo ,
(ii> Cpuouo =¢u° , that is operation "uo" is

a closure operation for vector lattices.

Lemma 14. If Y # ¢ is an arbitrary set and . is
ocC
an arbitrary system of subsets of Y such that Y - U H, + 0
n=1
for every sequence Hl’HZ"" from \er , then there

exists a & -field ;,—’l;D'ae and a O-1 measure /u_ o= OOC

with /A(Y) =1 and /u(nj -0 (se ).
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Theorem 15. For an arbitrary class q) of bounded

functions we always have (baD CPO .

Theorem 16. If Cp is a vector lattice of boundeé
functions, then q)a:)cbou .

Remarks and problems.

1. As it was mentioned in the introduction, averaging
with finitely additive measures results in toemany averages.
Namely, we prove that if Cb is a vector 1attic'e separating
the points in X then every bounded function is an average

with respect to a finitely additive measure.

Theorem 17. Let Cp be a vector lattice of functions

defined on X and suppose that (D separates the points

inn X . Let LF be an arbitrary bounded function on X .

Then there exists a set S # ¢ , a finitely additive o-1
measure /.L. defined on all subset of S and a bounded
function F : XXS —> R such that for any sé&S F(.,s\é Cl)

and for any XxX€X ,

/*(25 ; ke(x\ = F(x,s)}) =1.

2. Theorem 18. There exists a vector lattice

Cb on a countable set X such that d“)u is a strict

subclass of Cba .
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It should be noticed that since X is countakle,
operation "o" does not affect any class defined on X ,
hence our theorem also shows that (Duo = (Da can not
hold in general. In particular, the inclusion (bouc d:.a

in Theorem 16 can not be improved to equality.

3. Let Cb = b& denote the family of bounde&
approximately continuous functions on [O,l} . As an
application we prove d“) 2 = b&l . Indeed, it follows
immediately from Theorem 2.2 of [13] that any bounded
Baire 1 function restricted to a countable set can be
extended to get a function in d‘D . That is (boo b&l .
and by Theorem 15, Cba:: bR also holds. On the other
hand, d) c b%l implies dP ac(b%]')a = b%l /see [9],

Theorem 2/.

We remark, that (ba = b&l holds also if d? is
the class of bounded derivatives, ¢ = b A, or the class
of bounded Darboux Baire 1 functions q> = bﬂ)&)l . This

is obvious from b¥ C bA < bQ Y)lC b&l .

4, Problems.

(i) What conditions on d) imply d)uo?d)ou ?

We know no examples of vector lattices where this equa’ity

fails to hold.
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(ii) Determine (D a if
d;) =§ functions of bounded variation on [0,1]15 or

Cb =§b0unded functions which are continuous on [0,1]

with at most countably many exceptional points} .

<iii\ Is q)aa = (t) 2  true for any vector lattice
q) ? If not, then can the sequence (\)ac aaC“. be

strictly increasing?

(iv} Is the weaker equality Cbao =dpa ; O

dpoa =¢a , or Cbua =¢a true for all vector lattices?

/(b au - q)a holds true, according to Theorem 8./
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