Real Analysis Exchange Vol. 7 (1981-82)

Michael Schramm, Department of Mathematics LeMoyne College, Syracuse, New York 13214

Fourier Series of Functions of Generalized Bounded Variation

The work described here appears in [4] and [5].

The ideas of Harmonic Bounded Variation (HBV) and A-Bounded Variation (ABV) began in the work of Goffman and Waterman ([1],[2],[3],[8]). Another notion of generalized bounded variation is described as follows. Let ϕ be a non-negative convex function defined on $[0,\infty)$, with $\phi(0)=0$ and $\phi(x)>0$ for x>0, and let $\Lambda=\{\lambda_n\}$ be a nondecreasing sequence of positive real numbers such that $\Sigma 1/\lambda_n=\infty$. We say that f is of $\phi\Lambda$ -Bounded Variation ($\phi\Lambda$ BV) on [a,b] if there is a c>0 so that, for any collection, $\{[a_n,b_n]\}$, of non-overlapping subintervals of [a,b], the sum $\Sigma\phi(c|f(b_n)-f(a_n)|)/\lambda_n<\infty$. When $\phi(x)=x^p$, p≥1, this class is called ABV^(p), and has been studied by Shiba [6]. Both ABV and $\phi\Lambda$ BV may be made into Banach spaces with suitable norms.

In [4], we obtain the following

Theorem

Let f:R \rightarrow R be of period 2π ;

(i) if
$$f \epsilon \Lambda BV$$
, $\omega_{1}(f; \delta) = O(1/\sum_{j=1}^{\lfloor 1/\delta \rfloor} 1/\lambda_{j});$
(ii) if $f \epsilon \phi \Lambda BV$, $\omega_{1}(f; \delta) = O(\phi^{-1}(1/\sum_{j=1}^{\lfloor 1/\delta \rfloor} 1/\lambda_{j}));$
(iii) if $f \epsilon \Lambda BV^{(p)}$, $\omega_{p}(f; \delta) = O(1/(\sum_{j=1}^{\lfloor 1/\delta \rfloor} 1/\lambda_{j})^{1/p}).$

A simple calculation shows that $|\hat{f}(n)| \leq (1/4\pi) \omega_1(f;\pi/n)$, so we have the following

Corollary

(i) If
$$f \in \Lambda BV$$
, $\hat{f}(n) = O(1/\Sigma 1/\lambda_j)$;
(ii) if $f \in \phi \Lambda BV$, $\hat{f}(n) = O(\phi^{-1}(1/\Sigma 1/\lambda_j))$.

This result is best possible in a sense given by: <u>Theorem</u>

If $\Gamma BV \xrightarrow{2}{} ABV$, there is a function $f \in \Gamma BV$ with

$$\hat{f}(n) \neq 0 (1/1/\lambda_j).$$

These results, as they pertain to ΛBV , were also discovered by Wang [7].

We obtain in [5] the following improvement of a theorem of Shiba [6]:

Theorem

If
$$f \in ABV^{(p)}$$
, $1 \le p \le 2r$, $1 \le r \le \infty$, $(1/r) + (1/s) = 1$, and
 $\sum_{n=1}^{\infty} n^{-1/2} (\sum_{k=1}^{n} 1/\lambda_k)^{-1/2r} \omega_{p+(2-p)s}^{1-p/2r} (f; \pi/n) \le \infty$,

then the Fourier series of f converges absolutely.

In his proof, Shiba uses the estimate $\sum_{l=1}^{n} \lambda_{j} \ge n/\lambda_{n}$. That this estimate may give up a lot is seen in the fact that it is possible to have $n/\lambda = o(\sum_{l=1}^{n} \lambda_{j})$, as is the case $n^{n} \qquad ln$ nin HBV, where $n/\lambda_{n} \equiv l$ and $\sum_{l=1}^{n} \lambda_{j} = \sum_{l=1}^{n} \lambda_{l} \log n$. In our proof $1 \qquad l$ we are able to dispense with this estimate.

We say that a convex function ϕ is Δ_2 if there is a constant k ≥ 2 so that $\phi(2x) \leq k\phi(x)$ for x>0. For such ϕ we

have:

Theorem

If
$$f_{\varepsilon\phi}ABV$$
, ϕ is Δ_2 , $l \leq p < 2r$, $l \leq r < \infty$, $(1/r) + (1/s) = 1$,

and

$$\sum_{n=1}^{\infty} n^{-1/2} (\phi^{-1} ((\sum_{k=1}^{n} 1/\lambda_k)^{-1} \omega_{p+(2-p)s}^{2r-p} (f;\pi/n)))^{1/2r} (\infty, n)$$

then the Fourier series of f converges absolutely.

We note in both cases above that the theorems for $\phi \Lambda BV$ are not direct generalizations of those for $\Lambda BV^{(p)}$.

REFERENCES

- [1] C. Goffman, Everywhere convergence of Fourier series, Indiana Univ. Math. J. 20(1970), 107-113.
- [2] _____ and D. Waterman, Functions whose Fourier series converge for every change of variable, Proc. Amer. Math. Soc. 19(1968), 80-86.
- [3] ____, A characterization of the class of functions whose Fourier series converge for every change of variable, J. London Math. Soc. (2), 10(1975), 69-74.
- [4] M. Schramm and D. Waterman, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc., to appear.
- [5] _____, Absolute convergence of Fourier series of functions of $\Lambda BV^{(p)}$ and $\phi \Lambda BV$, submitted.
- [6] M. Shiba, On absolute convergence of Fourier series of functions of class ΛBV^(P), Sci. Rep. Fukushima Univ. 30(1980), 7-10.
- [7] S. Wang, Some properties of functions of Λ-bounded variation, Scienta Sinica, to appear.
- [8] D. Waterman, On Λ-bounded variation, Studia Math. 57(1976), 33-45.