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 PRODUCTS OF DERIVATIVES AND APPROXIMATE CONTINUITY

 This note contains the main points of a talk

 given by the first author at Real Analysis Symposium.

 We introduce the following notation: R is the

 real line; D is the system of all finite derivatives

 on R; if, moreover, n is a natural number, then

 Dn = (fļ-»«fn; fļ,...,fn 6 DJ; C&p is the system of
 all functions approximately continuous on R.

 It is well known that derivatives behave badly with

 respect to multiplication. Simple examples show that,

 for instance, the product of a derivative with a

 differentiable function need not be a derivative. We

 intend to show, roughly speaking, that operations

 performed on derivatives lead to derivatives only in

 exceptional cases. As an illustration we mention that

 if g is a function on R such that the composite

 function gof is in D for each f 6 D, then g

 is linear. Another result pointing in the same direction

 is the following: Let f Ç D, let g be a function

 strictly convex on an open interval containing f(R) and

 let gof € D. Then f € C . Taking g(y) = y ^ for
 ap

 each y Ç (0,») we see that if f Ç D, f > 0 and if
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 also l/f Ç D, then f £ C . Using the Darboux

 property of derivatives we get: If f,g £ D and if

 fg * is a nonzero constant, then f,g ^ € C . This * ^ ap

 formulation suggests various generalizations. We

 succeeded to prove the following theorem:

 Let fļ,...,fn € D, f j > O and let € C •

 Let ai' • • • 'an ^ [°» !] » a1 + • • • + an £ 1. Then
 ai an

 f. •••f 6 D fi C . In particular, c f . € C
 1 n ap c j ap

 ( j = 1, . . . ,n) .

 It is not surprising that products of derivatives

 behave badly with respect to addition. We see this

 well when we investigate sums of powers of derivatives .

 It is natural to ask, e.g., under what conditions the
 2

 sum of the squares of two derivatives is m D .

 Because the product of a bounded derivative with a

 bounded approximately continuous functions is a derivative,

 the following holds: Let h € D, let cp,iļr 6 C and
 ap

 let the functions h,cp and iļr be bounded. Let f = cph,
 2 2 2

 g = iļrh. Then f + g 6 D ; actually, it is the square
 2 2 1/2

 of the derivative h (cp + iļr ) . It turns out that this

 example is not far from the general case. Namely: Let

 f,g € D, f2 + g2 € D2. Let h = (f2 + g2)1//2. Then

 h € D. If, moreover, h ^ 1, then f/h, g/h ç C
 ap

 We get even somehow stronger results, when we add

 powers with different exponents. For instance: Let

 f ,g,h € D, 1 £ f 2 + g^ + h^ Ç. D2 and g^ + h^ > 0. Then

 f,g,h 6 Cap.
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 It is probably not easy to give a simple
 2

 characterization of a function m D or, m general,

 in Dn. However, we would like to mention some partial

 results connected with that problem.

 Let fj 6 D, fj ^ 0, let Aj be a set closed
 in R and let g^ be its characteristic function

 n 2 (j = l,...,n). Then S f.g. € D 2 . In particular,
 j=i 3 3

 the characteristic function g of a closed set A is
 2

 always in D . A more detailed analysis shows that there

 are cp,iļr 6 D such that 0^ep£2, 0£f£2 and

 cp'|f = g. If 0 A ^ R, then 2 cannot be replaced

 by any smaller number.

 With the help of A.M. Bruckner we have proven that

 every function of Baire class 1 that equals zero
 2

 almost everywhere is in D .

 Now let L = [O,®) and let be the system of

 all derivatives on L. The meaning of d!3 is now obvious .
 JLi

 For each function F on L we define

 F(y )-F(x )
 T (F ) = sup { lim sup - - -

 n-*» yn n

 X

 0 < ^ x < ^ Y Jn i 2 Y -* 0 i ' sup - <1} . ^ n ^ Y Jn i Y 2 n i '
 n n

 We have always T(F) ^ F (0). Moreover it is easy to

 prove that T(F) = F^ÍO), if f'+(0) exists and is
 finite .

 For each function f on L continuous on (0,®)

 1

 such that the Lebesgue integral I = f f exists we
 0
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 define S(f) = I, if I = ¿®, and S(f) = T(F) /
 X

 where F(x) = f f , if I £ R. If f satisfies our
 0

 conditions and if f Ç D^, then, obviously, S(f) = f(0).
 Suppose that f is a function on L that is

 positive and continuous on (0,®) . For each natural
 1/n n

 number n define qn = ( S ( f ' )) . One of our results
 says : Let n > 1 . Then f € d!? if and only if

 Li

 f (°) ^ qn.
 It is easy to see that f°r

 instance, g is a nonconstant positive continuous

 periodic function and if f(x) = g(l/x) for x ç (O,»),

 then • This shows that ^ dl+^
 for each n .

 Now let q = lim q . If f(0) >q, then f í D°
 n ii

 for some n; if f (0) < q , then there is no such n.

 If S(ļln fļa) < » for some a > 1, then q = ® or
 q = exp (S (In f)); in general, if q < », we have

 q = lim(exp(S(pV In f)))(p -» -<*>).

 The proofs of the assertions stated in this note

 will be published later.

 Finally, we would like to mention the following

 problem: Is a bounded product of two (nonnegative)

 derivatives the product of two (nonnegative) bounded

 derivatives?
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