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 LEBESGUE AREA AND DE GIORGI PERIMETER OF

 THE BOUNDARY OF A TOPOLOGICAL BALL IN

 We discuss two measurements of the image of the boundary of the

 standard unit ball of Rn under homeomorphisms of the ball into Fn .

 One is the (n-1) -dimensional Lebesgue area of C and the other is the

 deGiorgi perimeter of A , where A is the image of the ball and C is

 the image of the boundary of the ball. The results mentioned here are

 consequences of a paper by Casper Gof fman and the author [ 14] . The above

 paper was dedicated to Lamberto Cesari in honor of this 70th birthday.

 As will be evident, several of the results and concepts required in the

 paper are due to Lamberto Cesari. The main theorem of the present paper

 is the last theorem of Section 3.

 Remark ♦ After the lecture was delivered at the Real Analysis Symposium,

 V'
 Professor Jan Marik directed the author to the paper [15] of J. Král from

 which a further reference to the paper [12] of W. H. Fleming was found.

 Many of the results of [ 14] and the present paper were first proved by

 Fleming in [12] (and subsequently by Král in [15]) under a more general

 setting'. We point out that the proofs given in [ 14] are different from those

 of Fleming [12] because we are able to take advantage of the added conditions

 not assumed by Fleming and Král. These notes follow the lecture given at

 the Real Analysis Symposium with appropriate additional remarks relating

 to the works of Fleming and Král.
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 1. Notations and definitions .

 With U = (x Ç Rn| ļ|xļ| £ 1} and SU = {x € Rn| ļ|xļ| = 1} , let

 f : U -» A = CU] C Fn be a homeomorphism, C - f[3U] and B = A ' C . It

 is well known that B is an open set of Rn .

 For each i and x = (x^, . . . ,x^, . . . ,x ) € Rn , let

 = , ,x. x ) , where the i^1 coordinate of x is deleted, ' i 1 i-1 , i+l n , '

 and let rr^ : Rn •* Rn * be defined by tt^(x) = x^ . We use the notation
 / A '

 x = / (x^X^ ' .

 Since 3U is finitely triangulable, the Lebesgue area of a continuous

 map g : 3U -» Rn is defined. (See [3] and [8]). We denote it by ^(g) .

 For each i , we have associated with g the Lebesgue area A.n_ļ(rr£° g) .

 We abbreviate A^^fļ^U) as An«.ļ(C) and ^I^U) as Aq .
 Clearly, when n -2 , A^(g) is the Jordan length of g and A^Crr^o g) is
 the total variation g .

 The Lebesgue measure on Ra will be denoted by ^ .

 Let F : Rn -* R be Lebesgue measurable. F is said to be of bounded

 variation in the sense of Cesari, BVC, if

 n r
 1-1 {-! ess V( F|„¡ ,

 R

 where ess V( f1tt^(^)) is the total variation of F1tt^(x^) using partition

 points consisting only of points of approximate continuity of Fļrr^^(x^) .

 For later use, we abbreviate the characteristic function of a measurable

 set W restricted to tt^(Sc^) by W^ .
 i
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 According to deGiorgi [4,5], a measurable subset W of Rn is said

 to have finite perimeter if its characteristic function has partial de-

 rivatives in the distribution sense which are measures. The total variation

 of the resulting vector-valued measure is called the perimeter of W and is

 denoted by • ^e 1uote a fundamental theorem of deGiorgi.

 Theorem T 41 . For a bounded measurable set W of Rn , P , (W) < œ when
 - - - - n-l

 and only when there is a sequence of polyhedral regions ^(k = 1,2,...)

 such that ^»i^W^) i M < » for all k and ^(C^W^) U (W^'W)) -+ 0
 as k -♦ » .

 We also quote a second characterization.

 Theorem. For a measurable set W of Rn , < « when and only

 when the characteristic function of W is BVC .

 2. A theorem of Federer.

 At the end of his paper [10], H. Federer gives two theorems which we

 will formulate into one. To state the theorem we need the following

 terminology. We denote by C a finitely triangulable, connected,

 (n-l) -dimensional manifold contained in Rn and by ic : C -♦ Rn the in-

 clusion map. Let E be the bounded component of Rn'C . Then E U C

 is the closure of E in Rn which will be denoted by clE . The two

 theorems from [10] are the following.

 Theorem [10]. If V^CC) = 0 and ^n_^(C) < « then pn_ļ(E) < ® •

 Theorem [ 10] . For n = 2 , -i(C) < » when and only when P^(E) < ® .
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 When p. (C) = 0 , we have P - (E) = P - (clE) . It is also true that, n , n-lv/n-l - -

 for n = 2 , ¿(C) < « implies P«2(C) = 0 . Consequently, the above two
 theorems take the following form.

 Theorem. If u (C) = 0 and A , (C) < « then P , (E) + P , (clE) < « .
 - - xi ii- 1 u- i n- 1

 Moreover, when n = 2 , the converse implication is true.

 i

 The first statement of the above theorem is an immediate consequence of

 deGiorgi's characterization of finite perimeter stated earlier. The second

 statement is a consequence of the BVC characterization of finite perimeter

 together with the following three classical theorems of real functions.

 Jordan Theorem. Let g = (g,,..., S ) : -» Rn be continuous. Then
 1 xi

 a

 ji (g) ś E V (g.) , where V (g.) is the total variation of g. .
 i=«l 11 1

 Banach Indicatrix Theorem. Let g : S* -» R be continuous . Then

 V(g) » Mc(y,g)dlAļ(y) , where Mc(y,g) is the cardinal of the set g *(y) .

 12 1
 Theorem. Let g = (gļ,g2) : S ■> F . Then, ¿( g) < «a implies P>2(g(S )) = 0 .

 The proof follows the scheme given below.

 1. P^E) + Pj^clE) < « => Pj^clE) < ® .

 2. P1(clE)<® » J* Mc(x2,tt2 o ic)dn1(x2) < « .
 R

 3. V(tt1o ic) + V(tt2 o ic) < » =» X(ic) < « .

 4. £( ic ) < « =» H2(C) » 0 .

 The general converse for n s 3 was not resolved in [ 10] .
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 3 . Status of the converse.

 Due to the Jordan-Schoen flies Curve Theorem, when n = 2 , clE is a
 2

 topological closed ball in R . This need not be the case when n 2 3 ,

 as is well known. We shall discuss the converse in the setting of the sets

 A, B and C of Section 2 where A is a topological closed ball in Rn .

 Consider the case n = 3. There are the corresponding analogies of

 the Jordan Theorem and the Banach Indicatrix Theorem. Namely,

 2 2 3
 Cesari-Jordan Theorem [3]. Let S be a two-sphere and g : S -» R be a

 continuous map. Then A2(g) s: A^tt^o g) + A (^o g) + A2(tt3o g) .

 2
 (The above theorem has been generalized from S to any finitely triangulable,

 connected, oriented, two-dimensional manifold in [6], [17].)

 Modified Banach Indicatrix Theorem [3] and [7,8], Let k 2 2 , C be a

 finitely triangulable, connected, oriented k-manifold and g : C -» R be a

 continuous map . Then

 Ak(g) = J' M(y,g)dnk(y) ,
 R

 where M(y,g) is a topological multiplicity function defined by means of

 )íech cohomology.

 Unfortunately, the well known example of Besicovitch [1] shows that

 A2(C) < » does not imply 1X3 (C) - 0 for some topological two-sphere C
 3

 in R . The example of Besicovitch has the property that C is the
 3

 boundary of a closed topological ball A in R , A2(C) < ® , IŁj(C) > 0

 and P2(B) < « (B = A'C) , the last fact being a consequence of deGiorgi's
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 characterization of finite perimeter. So, the scheme of section 2 cannot

 be used. But, actually, for n = 2, P^(E) + P^(clE) < es directly implies

 ^(C) » 0 . Fortunately, for n = 3 , this implication can be generalized.

 Theorem [14]. If P2Œ) + P2(clE) < ® then iig(C) 31 0 » where C is a
 3

 compact, connected, two-dimensional manifold in R and E is the
 3

 bounded component of R ' C .

 We outline the proof given in [141. Let Is is 3. Then ess V (CA ) < «
 A XjL

 for iÍ2~a^most every x' A because

 I essV(CA)dH ¿ (Ą) 1 = ¿ ess V ( (c1E)a » X E A )du L (x X ) E Xi ¿ 1 r 2 Xi X xi L X

 í ^ ess V((clE) a )dvi2(xi) + ess V( E A ^dt^C^) <® .

 If essV(CA) < ® and U.(CA ) >0 then
 Xi 1 Xi

 /CA can be decomposed in a union of a nonempty, finite,
 Xi

 (*i> / disjointed collection of nondegenerate closed intervals

 l^and a set of y^-measure zero.

 Suppose Uß(C) > 0 . Then almost every point x of C is a point of linear

 density in the x^,x2,xj directions. The condition (*^) implies that,
 contained in C , there are line segments in these directions passing

 through almost every x of C . Thus one can find an uncountable number

 of disjoint triods in C . But Moore's Triod Theorem [16] says there are

 no more than a countable number in a disjointed collection in the two-

 dimensional manifold C . This contradiction yields V^CC) = 0 .
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 For Besicovitch's example, the above theorem gives P2CA) = « .

 V e
 Remark. Thanks to Professor Mank, e the author learned that the above

 theorem was known to Král [ 15] and Fleming [ 12] . The proof given above

 is different from that of [ 15] . A proof is not given in [ 12] . The following

 problem still remains open.

 Problem. Let n i 4 and A,B and C be as in Section 1. Does

 Pn_^(A) + Pn_ļ(B) < 00 imply ^n(c) Œ 0 ? More generally, suppose C is

 a compact, connected, (n-1) -dimensional manifold in Rn and E is the

 bounded component of Rn'C . Does + ^n-l^C^*^ < m ^n^ =
 The general form was asked in [ 12] .

 The indicatrix theorems deal with two multiplicity functions Mc and M ,

 the first being the crude counting function used by Banach and the second
 V

 being the topological one defined in terms of Cech cohomology. There is a

 third one defined in terms of the stability of the map g : C -» R [7,8,9] ,

 where the conditions assumed are those of the Modified Banach Indicatrix

 Theorem above. This multiplicity function is denoted by M (y>g) and the

 stable area of g is given by S^(g) = f Mg (y,g)dp^(y) . In general,

 Mg(y,g) £ M(y,g) . It can happen that Sfc(g) < Afc(g) [7]. Suppose
 k+1 k+1 k

 g : C •+ R is continuous, rr^ : R -♦ R is the projection onto the first
 k+1 k+1

 k coordinates and : R -+ R is orthogonal. Then the integral geometric

 averages of ^(tt^o ¿ 0 g) and 4> 0 g) are called, respectively, the

 integral geometric area M^Cs) and the integral geometric stable are* S^(g) .

 In general, Sk(g) £ M^g) s Ak(S) •

 We now quote a famous theorem of Cesari.
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 2 2
 Theorem [2]. Let g: S -» R be continuous. Then M(y,g) ■ M (y, g) except

 S

 2
 for a countable set of y in R

 With the aid of the above theorem and the Cesari-Jordan Theorem, Federer

 proves

 2 3

 Theorem [9]. Let g : S -t R be continuous. Then = 82(g) .

 We state a theorem from [14].

 Theorem [14]. Let n ^ 2 and A,B and C be as in Section 1. If either

 P (A) < «a or P . (B) ' < « then S -(C) ' < » . n-1 n-lx . ' n-1 '

 Consequently, we have

 Theorem. Let 2í ní 3 and A,B and C be as in Section 1. Then

 y. (C) 7 = 0 and A , (C) < « when and only J when P , (A) ' + P , (B) ' < œ . n 7 n-1 , J n-lv , ' n-1 , '

 The validity of the above statement for n s 4 is still unresolved.

 Remarks . The paper [ 12] by Fleming includes much of what appears in [ 14] in

 a more general setting, and, indeed, the results in [12] are stronger.

 The additional hypotheses assumed in [14] allow proofs which are different

 from those of Fleming. We quote the theorem of Fleming.

 Theorem f 121 . Let C be a finitely triangulable, connected, (n-1) -dimensional

 manifold in Rn and E be the bounded component of Rn'C . Then, if

 P .(E) < « or P .(clE)<«9, the integral geometric area of C does not
 n-l n-1

 exceed either of P , (E) ' or P ,(clE) ' . n-1 , ' n-lv '

 In his proof, he proves the following which is not explicitly stated in [12],
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 Theorem [12]. Let C be a finitely triangulable, connected, (n-1) -dimensional

 manifold in Rn and tt : Rn -» Rn be the natural projection. Then

 M(y,n(C)) = M (y,Tr(C>) for every y Ç R11"1 . Consequently, the integral
 S

 geometric area and the integral geometric stable area of C coincide.

 Moreover, if Un(C) = 0 then Sn_^(C) = ^n_ļ(C) .

 An analysis of the proof yields the more general theorem below.

 Theorem. Let C be a finitely triangulable, connected, oriented,

 (n-1) -dimensional manifold and g : C -+ Rn be an immersion (i.e., locally a

 homeomorphism) . Then M(y,TT° g) = M (y, no g) for every y € Rn ^ .

 Consequently, the integral geometric area and the integral geometric stable

 area of g coincide. Moreover, if p-n(g(C)) = 0 , then ^(g) = A^ ^(g) .

 Notice that in the last theorem C need not be embeddable in Rn . The

 example of [7] shows the immersion hypothesis is necessary. The proof

 can be made using the cohomology calculations in Fleming's proof, the fact

 that C is a locally connected continuum and the following two lemmas.

 Lemma. Let X and Y be metric spaces with X compact and g : X -» Y

 be an immersion. If Z is a closed subset of X such that g| Z is a

 homeomorphism into Y then there is a neighborhood W of Z such that

 g|W is an embedding of W into Y .

 Proof. Since X is compact and g is an immersion, there is 1) > 0 such

 that for € X with 0 < dx(xļ,x2) <11 it is true that g(x^ g(x2>.
 Also, since gl Z is a homeomorphism and Z is compact there is y > 0

 such that for zļ>z2 € 2 with dy (g(x^) »g^) ) < Y it is true that
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 dx^zl'z2^ K uniform continuity of g gives 6 > 0 such that

 dx(xļ,x2) < ô implies d^CgCx^ ,g(x2>) < y/2 . We may assume 6 < T|/4 .

 Let W = (w Ç Xļ d^(w,Z) s: ô} • We show g is one-to-one on the compact

 set W . Let w^,w2 6 W with g(w^) =» g(w2) . There are zļ»z2 € z suc^

 that s 6 and dx(w2,z2) * 5 • From ^(sC2^) >S(Z2)) *

 dyCgCz^łgiw^) + dy(g(wx), g(w2)) + dy(g(w2),g(z2)) <j+0+|=y »we

 get dx*zl,z2* < * So' dx^wl,w2* * dx*wl,zl* + dx(zl,z2) + dx^Z2'W2)

 s: Ö + T 1/4 + 6s 3T1/4 < T| . Since g(w^) = g(w2) we have - w2 •

 Lemma. Let X be a compact metric space and g : X ■+ R be an immersion.

 Then gļC is a homeomorphism for each component C of X .

 Proof. Suppose C is a nondegenerate component of X . Let x Ç C and W

 be a compact neighborhood of x such that g is a homeomorphism on W .

 Since g(W) is a compact subset of R , the components of W are points

 or arcs. So, x is contained in a unique component y of W f| C and this

 component is an arc. Moreover, there is Ô > 0 so that d(x,y' ) s 5 for

 all components Y' of W f| C with y' j4 Y . That is, C is locally

 arcwise connected. Hence C is arcwise connected. Suppose g is not

 one-to-one on C . That is, there are xļ>x2 ^ ^ such that x^ ^ x2 and

 g(x^) = g(x2) . There is an arc I c C such that xļ>x2 ^ * • Since g
 is real-valued, g|l is not an immersion of Ī into R . This contradicts

 the fact that g is an immersion. Consequently g|C is a homeomorphism.
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