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 Peano Derivatives: A Survey

 M.J. Evans and C.E. Weil

 §1. Introduction and Early Historical Notes

 The notion of a k*"*1 derivative of a real valued function

 of a real variable is well understood by most undergraduate

 calculus students. The definition is iterative in nature and

 thus easily comprehended if one initially understands what a

 first derivative is. This nice feature can present a problem,

 however, because in order to find the k^h derivative of a

 function f at a point x, one must know all the previous

 derivatives# not only at x, but at every point in a neighborhood

 of x. One type of generalized k*-*1 order differentiation,

 having Taylor's theorem as its motivation, attempts to skirt

 this drawback. This kind of differentiation is called Peano

 differentiation and is the topic of this survey article.
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 Definition 1. 1. A function f ¿s said to have a. k

 Peano derivative at x jLf there exist numbers f^ (x) , f £ (x) , . . . ,

 f^ (x) such that

 f (x + h) = f (x) + hf^ (x) + (h^/2) f 2 (x) + . . . + (h^/kl ) f^ (x) + o(h^)

 as h O. The number f^ fx) is. called the kfc^ Peano deriva-
 tive of f at x.

 This concept was presented in 1891 by G. Peano in [34]. (A

 German translation of this Italian article may be found as
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 Appendix III in [16].) There Peano introduced this type of

 derivative, obtained a product rule# a quotient rule, and pointed

 out that if a function f has an ordinary k*1*1 derivative at

 X, f ^ fx) , then it must have a k*-*1 Peano derivative at x
 fk)

 and f fx) = f^ fx) . The converse is not true for k ¿ 2 as is
 exhibited by the function

 Ç x^sinfl/x) if x 7^ 0,
 f(x) =/

 V.0 if x = 0 .

 Here f ^ = 0* but f ^ fO) does not exist. Thus k1-*1 order
 Peano differentiation is a true generalization of ordinary k*-*1

 order differentiation although obviously there is no difference

 for k = 1.

 Reintroducing the Peano derivative in 1935 [12], A. Denjoy

 refined the example mentioned above to show that given any

 nowhere dense closed set E and an integer k 2, there is

 a function which has a k^ Peano derivative at each point of

 the real line R, but for which no point of E is a point of

 ordinary k*1*1 order differentiability; in fact, the set of
 fk)

 points where f fx) fails to exist turns out to be precisely

 E. Denjoy then showed that this function is in a sense typical

 of functions having k*-*1 Peano derivatives by showing that if

 f has a k*"*1 Peano derivative at each point of an interval I,

 then there is an open, dense set in I at each point of which f

 is k times dif ferentiable in the ordinary sense. He further

 showed that a function is determined fup to a polynomial of

 degree k - 1) by its ktłl Peano derivative by proving that
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 if (x) = 0 for each x in an interval, then f is a poly-

 nomial of degree at most k - 1 on that interval.

 Before proceeding to a more in-depth examination of the

 properties of a k^-*1 Peano derivative, we should mention an

 early modification of it due to Ch. de la Vallee-Poussin [3 5]

 which proved useful in the study of trigonometric series in the

 early part of this century.

 Definition 1.2. A function f is said to have a. k*-*1

 symmetric derivative at x if there is a. polynomial P (h) of

 degree k or smaller such that

 ( f (x + h) + (-1) kf (x - h) } /2 = P (h) + o (hk) as h -» O .

 If denotes the coefficient of h in P (h) , then is

 called the k^ svmme trie derivative of f at x.

 It is clear that if k is even, then P has only even

 powers of h, and if k is odd, only odd powers. It is not
 ł* H

 difficult to see that if f has a k Peano derivative at x,

 then it has a k*"*1 symmetric derivative at x and the two are

 equal. The converse is false, even for k = 1, as the absolute

 value function demonstrates at the origin. However, J. Marcinkiewicz

 and A. Zygmund [25] showed that if f has a k*-*1 symmetric

 derivative at each point of a set E, then f has a k^1 Peano

 derivative almost everywhere in E.

 The k^h symmetric derivative occurs in the study of trigo-

 nometric series as one considers the Cesaro summability of

 repeatedly differentiated series. Marcinkiewicz and Zygmund [25]

 showed that if the kfc^ symmetric derivative of f at x
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 exists, then the Fourier series for f differentiated term by

 term k times is summable (C,a) at x to the k1-*1 symmetric

 derivative of f at x, provided a > k. They further showed

 that if one supposes that the series
 GO

 a^/2 + Zi (a cos nx+b sin nx) 0' n n n n=l n

 is summable (C,a), a > -1, at Xq to a finite sum s and if
 the series obtained by integrating termwise k times converges

 t-H

 in a neighborhood of Xq to sum F (x) , then the k symmetric

 derivative of F at Xq exists and equals s.
 Marcinkiewicz [24] obtained the following decomposition as

 a tool for the study of trigonometric series, which, like the

 previously mentioned theorem of Den joy, sheds considerable light
 J. Va!

 on the structure of functions possessing k Peano derivative

 everywhere. He showed that if f^ (x) exists at each point of a
 measurable set E, then there is a closed set F in E of

 measure arbitrarily close to that of E and a decomposition

 f (x) = g (x) + h (x)

 such that g has a continuous k^ ordinary derivative through-
 out the interval of definition of f and h (x) =0 for each x

 in F. One application of this decomposition to Fourier series

 is to prove that if f has a k*"*1 Peano derivative at each point

 of a measurable set E, then the series obtained by differen-

 tiating the Fourier series of f termwise k times is summable

 (C,k) almost everywhere in E. Other applications of this

 decomposition to the study of Fourier series as well as other
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 results dealing with the almost everywhere existence of k*-*1

 Peano derivatives may be found in [44]. In the next section of
 i. l_

 this survey we wish to concentrate on the properties of k

 Peano derivatives which exist on an interval.

 9



 §2. Properties of the k***1 Peano Derivative

 In 1954 H.W. Oliver [31] published the first extensive work

 devoted exclusively to exhibiting properties of k Peano

 derivatives. He showed that such a derivative has several of the

 properties known to be possessed by an ordinary derivative. To

 be more specific, suppose that at each point of an interval I

 a function f has a k*"*1 Peano derivative. Oliver established
 +• Vi

 that f^ is of Baire class one by noting that the k difference

 h~k S (-l)k_iř)f (x + ih)
 i=0

 converges pointwise to f^ (x) as h -♦ 0. Den joy [12 J had
 obtained this result earlier in the more general setting where

 f^ is defined relative to a perfect set H for a continuous

 f. Oliver also showed that f^ must have the Darboux property
 on I, another property well known and easily verified for

 ordinary derivatives. Moreover, he showed that if f^ is
 bounded above or below on I, then f is the ordinary k

 derivative of f on I. In particular, this yields the mono-

 tonicity theorem which states that if f ^ 0 on I, then
 is nondecreasing and continuous on I. Combining this with the

 fact that f^ is of Baire class one, it follows that f^ is an
 ordinary k^ derivative on an open, dense subset of I, a

 fact previously established by Denjoy via different means as we

 noted in §1.

 Before continuing with the work of Oliver, we wish to

 interject that f^ possesses the Darboux property in a rather
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 interesting fashion with respect to the open, dense set on which

 it is an ordinary derivative. The ordinary k1-*1 derivative has

 the Darboux property on this open dense set; in fact, a much

 stronger result was established by R.J. O'Malley and C.E. Weil

 [3 2]. They showed that if f^ attains both values -M and M
 fkì '

 on I, then there is an open interval J on which f^ = f '
 fk)

 and f attains both -M and M on J. (In this paper we

 shall say that any generalized derivative possessing this property

 has the -M,M property.)

 In [13] Denjoy showed that if g is an ordinary derivative

 on I, then for any open interval, (a,b), g ^ (a,b) either is
 empty or has positive Lebesque measure. A function having this

 property is said to have the Denjoy property. Oliver [31]

 showed that f^ possesses the Denjoy property on I.
 In a monumental study of properties of the ordinary

 derivative Z. Zahorski [43] proved that the following property is

 possessed by every ordinary derivative.

 Definition 2.1. A function g .is. said to have the Zahorski

 property if for each open interval (a,b) , for each x in

 g ^ (a,b) , and for each sequence of intervals IR converging to
 x, (The endpoints of the converge to x, but x belongs

 to no I .) lim li l/distíx,I.) = 0, where 1*1 denotes
 - - n n n

 n-»®

 Lebesprue measure and dist (x, I ) denotes the distance between

 x and I .

 C.E. Weil [42] showed that a k1"*1 Peano derivative also has

 the Zahorski property. In a subsequent paper [40] he then
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 introduced a property somewhat stronger that the Zahorski property,

 which he called property Z.

 Definition 2.2. A function g defined on an interval I

 is said to have property Z if for every e > 0, each x in I,

 and each sequence of intervals converging to x such

 that g (y) ¿ g (x) oņ I or g (y) £ g (x) on In for each n,
 we have

 I (y € in: lg (y) - g (x) 1 2 e} I
 ÍÜÜ n-ł® |ln| 1 n + dist(x,I n ) = 0 * n-ł® 1 n n

 Weil showed that this property is strictly stronger than the

 Zahorski property, yet still is possessed by every k*-*1 Peano
 derivative.

 Before closing this section on properties of k^*1 Peano

 derivatives we wish to mention an interesting generalization

 recently introduced by M. Laczkovich [18], namely, absolute Peano

 derivatives.

 Definition 2.3. Let f be defined in a_ ne ighbor hood of x.

 We say that the absolute Peano derivative of f at x exists

 and is A (in symbols f* (x) = A) if there is a_ function g,

 a nonnegative integer k, and a. Ô > 0 such that

 (i) g^ = f on (x - 6,x + 6) , and

 (ii) gk+1 (x) = A.

 Laczkovich showed that this concept is unambiguously defined,

 that if f* exists on an interval it is a function of Baire

 class one, that it has the Darboux and Denjoy properties, and if
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 f* is bounded above or below on an interval, then f * = f ' on

 that interval. It is not known whether f* has the -M,M

 property, the Zahorski property, or property Z.

 13



 §3 . k*"*1 Lp Derivatives
 til.

 Notice that we can reinterpret the definition of the k

 Peano derivative, Definition 1.1, as follows:

 II f (x + t) - f (x) - tf^ (x) - . . . - (tkAl ) f^ (x) [o, h] = ° *

 Now if we replace convergence by convergence in

 L , 0 < p < », we arrive at the definition of the k*-*1 L
 ť ir

 derivative.

 Definition 3.1. A function f has a k"*-*1 L derivative,

 O < p < -, at x if there exist numbers f , (x) , . . . , f , (x)
 p, X p, K

 such that

 J I f (x + t) - f (x) - tfp^ x (x) "... - (tkAi) fp#k (x) |pdt}1//p

 = o (hk) as. h -» 0 .
 Ja

 The number f v k (x) is. called the k L derivative of f at x. p, v k p

 This type of natural generalization of Peano differentiability

 was introduced and studied in the several variable setting by

 A. P. Calderon and A. Zygmund [8]. It has the advantage of being

 preserved under singular integral transformations.

 The role of the p = 0 case can now nicely be assumed by

 the approximate k1-*1 Peano derivative which was originally

 defined by Den joy [13].

 Definition 3.-2. A function f has a k***1 approximate

 Peano (Lq) derivative at x if there exist numbers

 f (1) (x) , . . . , f ^ (x) and a set E having density 1 at O such
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 that

 f (x + h) - f (x) - hf (1) (x) - (hk/k: ) f ^ (x)
 v

 = o (h ) as h •* O through E .

 The number f ^ (x) is called the k*1*1 approximate Peano
 derivative of f at x.

 The notation f , (x) will be used to unify these defini-
 P# K

 tions. It will denote the k L derivative of f at x,
 £r

 0 <1 P ¿ Thus fk(x) = fœ#k(x) and f ^ (x) = fQ^k(x). It
 is a routine matter to show that if 0 q < p ^ 08 and f has
 •hh t"h

 a k L derivative at x, then it has a k L derivative
 P q

 at x and f_ , (x) = f , (x) [8,14], It is also easily verified
 P# ^ H# ^

 "H Vi

 that if f has a k L derivative at x, where p ^ 1,
 Jtr

 then f , is the " (k + 1) Peano derivative of the integral
 p, K

 ł*H
 of f [14]. Thus for p 1, k L derivatives are seen to

 P

 have all the properties mentioned for Peano derivatives in §2.

 Let us take up the case p = 0. The situation where k = 1

 is that of what is classically called the approximate derivative

 of f at x and is customarily denoted by f' (x). (Thus
 ^P

 f' (x) = fn X , (x) .) One of the first investigations of the cip VJ ę X

 properties of the approximate derivative is due to G. Tols toff

 [38], L J He showed that if f' exists on an interval I, then L J ap

 it is of Baire class one, it has the Darboux property, and if

 f ' > O on I, then f is nondecreasing on I. Tolstoff ' s
 ap

 proofs are difficult and lengthy. The results were subsequently

 established in a more concise fashion by C. Goffman and
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 C. Neugebauer [17] by utilizing the axiom of choice in an

 adroit manner. The Den joy property for f_ļ was established
 independently by S. Marcus [26] and Weil [42]. Weil further

 showed that f' has the Zahorski property [42], and subsequently
 ap

 that it has property Z [40]. O'Malley and Weil [3 2] verified

 that f' has the -M,M property,
 ap

 Taking up the case of the general k, M.J. Evans [14]

 showed that f^ ^ is of Baire class one. B.S. Babcock [3] and
 S.N. Mukhopadhyay [30] independently established the Darboux,

 Denjoy, and Zahorski properties as well as the fact that if f^ ^

 is positive on an interval I, then f^ is nondecreasing on
 I, and more generally that if f_ , is bounded above or below

 U| K

 no 7
 on I, then f^ ^ = f 7 on I. Utilizing certain techniques
 of S. Verblunsky [39] dealing with Peano derivates, which are

 defined in a natural manner, Mukhopadhyay' s approach yielded a

 more general monotoni city result in derivate form. Babcock

 further showed that f^ ^ has property Z. C.-M. Lee [19]
 has established the -M,M property for f^ ^ às well.

 +"h
 As mentioned in the introduction, the ordinary k derivative

 is defined in an iterative fashion, whereas the f , derivatives
 P# &

 are not. It is natural to inquire whether these derivatives can

 be obtained in an iterative manner. The first major result of

 this nature was obtained by Marcinkiewicz and Zygmund [25], who

 showed that if f , . , exists on a measurable set E, then
 00 , K+l .

 fœ (x) = (fœ ļ^o i almost everywhere in E. Evans and

 Weil [15] have recently extended this to show that if f^ ļc+j,p^.l,
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 exists on E, then f . . (x) = (f v) • almost everywhere in
 P/K+3 p#K u, j

 E. Further, it is shown that the O in this result cannot be

 replaced by any q > 0. H.H. Pu and H.W. Pu [3 7] have obtained

 a pointwise result on iterated Peano differentiation. They have

 shown that if fœ monotone or Lipschitz on I and

 fœ .. . (x) exists for some x in I, then (f 00 . ) . (x) exists 9 K+J 00 # K J

 and equals fœ ^+j (x) . O'Malley and Weil [33] have examined the
 reverse problem by assuming that f . , O p £ ®, exists on

 P# ^

 I and if (f . ) . (x) , 1 q ®, exists for some x in I,
 P» k q, j

 then f 00 , . (x) exists and equals (f . ) . (x) . (Evans and 00 # p# K q# 3

 Weil [15] noted that under these conditions (f v) K . (x) can P# K <3*3

 exist only at a point x at which f is k times dif ferentiable

 in the ordinary sense.) In addition O'Malley and Weil provided

 two examples to show that the condition 1 q £ ® is essential.

 Let 0 < q < 1. First, there is a function f defined on a

 neighborhood of zero such that (f ,) , (0) exists but
 l q, 1

 f 2 o (°) does not. Second, there is a function g such that 0# 2 o

 (g^ g ļ (0) and gœ both exist but are not equal. Lee
 and O'Malley [22] had earlier provided two analogous examples for

 the situation where q = 0.

 In reference to the notion of an absolute Peano derivative

 mentioned in §2., Laczkovich [18] observed that because of

 functions like those presented by Lee and O'Malley, the notion

 of an approximate absolute Peano derivative cannot be unambiguously

 defined. Using the above function g of O'Malley and Weil, it

 follows by the same reasoning that an absolute L derivative,
 hr

 0 < p < 1, cannot be well defined. However, for p 1 an
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 absolute notion is feasible and indeed possesses all the proper-

 ties of the absolute Peano derivative. In truth it is an

 absolute Peano derivative, as follows from the fact that any

 k^h L derivative, p ¿ 1» must also be a (k + 1) ^ Peano
 k'

 derivative [14],
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 §4. Related Topics

 The centrality of the notion of the Peano derivative was

 perhaps best demonstrated by J.M. Ash [1]. He defined a general-

 ized kfck Riemann derivative in the following fashion. Let

 A = {aQ, a^# . . . , a^+jj; aq# • • *^+4} ke a set real numbers with
 a^ 4 and

 k+A .

 L A. at = O, j = 0, 1, . . . ,k - 1 = k! , j = k .
 i=0 1 1

 The function f is said to have a k^h generalized derivative

 with respect to A at x if there exists a number ^[k] ^
 such that

 ¿ A 1 . f (x + a. 1 h) = ffvļ (x) h^ + o (h^) as h -♦ O . i=0 1 1 LKJ
 i. U

 He then showed that if a function f had such a k generalized

 derivative for a given A at each point of a measurable set E,
 th

 then f must have a k Peano derivative at almost every point

 of E. In a subsequent study [2] Ash characterized the Peano

 derivative in terms of these generalized derivatives.

 We should point out that throughout this paper we have

 assumed all derivatives mentioned to be finite. By making the

 obvious changes in the definitions one can permit +« and -•

 as values for the derivatives discussed. Properties do not

 automatically carry over, however. Zahorski [43 ] showed that

 such an ordinary derivative will still be of Baire class one.

 It was not until 1970 that the corresponding result was established

 for the approximate derivative in a very clever fashion by

 D. Preiss [36]. P.S. Bullen and S.N. Mukhopadhyay [5] have
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 presented a proof for the statement that if f is continuous

 on I and f^ exists finitely or infinitely on I, then f^

 is of Baire class one. (Indeed, they concluded that f^ has
 the Denjoy property) . Unfortunately, their proof rests on the

 claim that

 f. (x) = lim h~k E (-1) í) f (x + ih) ,
 K h-*0 i=0 1

 which, as noted in §2., is valid if f^ (x) is finite. However,

 this is not necessarily true if f^ (x) is infinite, as the
 following example, constructed with the assistance of C.-M. Lee

 and R.J. O'Malley, shows. Decompose the interval (0,1] into

 [l/4n+^, l/4n] for n = 1,2,3,..., and further decompose each

 of these intervals into [ l/4n+1, 1/ (2«4n) ] and [ 1/ (2*4n) , l/4n] .

 On each second intervál let f (x) = x/n. On each first interval

 let f be linear. Finally let f (O) = 0. Note that for

 x € [0, l/4n], f (x) ¿ x/n. Thus f ^ (0) = 0. Next note that for
 x 6 [l/4n+' l/4n], f (x) > l/[ (n + l)4n+^J and hence f (x)/x2 ¿
 42n/[ (n + l)4n+1] = 4n~1/(n + l). It follows that f (0) = + ® .

 2 .

 For h=l/(2-4n), £ (-1) 2~Ł . (2) f (0 + ih) = -2f (V(2-4n) ) + f (2/ (2-4n) )
 i=0

 = -2 (1/ (2*4n* n) ) + l/(4n»n) = 0. Consequently
 2 2-i 2 lim E (-1) (.)f(0 2 + ih) r + 00 . So the question remains, if

 h-O i=0

 f^ (x) exists for all x in an interval where ±« are allowed,

 is f^ of Baire class one?
 In this survey we have not dealt with the application of the

 Peano notion of differentiation to the theory of non- absolutely

 continuous integrals. The interested reader is referred to [4].
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