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ON LOCAL RELATIVE CONTINUITY

Abstract
A local version of the relative continuity of J. Chew and J. Tong
is introduced and observed to have applications to connected functions
and separate continuity. A strong version of Levine’s decomposition of
continuity is also obtained.

1 Introduction

In [1] N. Levine introduced the notions of wx continuity and weak continuity.
In [2] the second-named author introduced the notion of local w* continuity
and showed that w* continuity implies local w* continuity, but not conversely.
Here we present a strict generalization of local w# continuity, which we call
local relative continuity. Local relative continuity is a generalization of the
closed graph property for functions of the form f : X — Y, where X is a
space and Y is locally compact and Hausdorff. Results are presented which
apply the notion of local relative continuity in the contexts of the closed graph
property, connected functions, separate and joint continuity, weak continuity,
and related concepts, including certain decompositions of continuity.

Throughout this paper, a function on a topological space X into a topo-
logical space Y, will be represented by f : X — Y, where X and Y have no
particular properties unless otherwise indicated.

2 Preliminaries and Definitions

In [3] it was shown that, for a function f : X — Y, where Y is a locally
compact Hausdorff space, if f has the closed-graph property, then f is locally
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w* continuous. A function f : X — Y is locally wx continuous if and only
if there exists an open basis B for the topology on Y such that for any V
in B, f~![Fr(V)] is closed in X, where Fr denotes the frontier operator. If
FY[Fr(V)] is closed for every open V C Y, then f is said to be w* continuous
[1]. Here we further generalize the closed-graph property by showing that local
wx* continuity implies local relative continuity, but not conversely.

In [4] a function f : X — Y is called relatively continuous at z € X if and
only if for any open set V C Y, where f(z) is contained in V, the set f~1(V)
is open in the subspace f~1[CI(V)], where Cl denotes the closure operator.
If this condition is satisfied for each £ € X, then f is said to be relatively
continuous. The notion of relative continuity is generalized by the following:

Definition 1 A function f : X = Y is locally relatively continuous if there
erists an open basis B for the topology on'Y such that f=(V) is open in the
subspace f~1[CI(V)] for any V € B.

3 A Generalization of the Closed-Graph Property

Theorem 1 If f: X = Y is locally wx continuous, then f is locally relatively
continuous.

ProoF. There is an open basis B for the topology on Y such that for any
V € B, fl[Fr(V)] is closed in X. Let V be any set in B. Then V =
Cl(V) = Fr(V), and f~}(V) = f7HCUV)] = f}[Fr(V)] = fHCU(V)] N
(X = f~}[Fr(V))]). Since f is locally w* continuous, the set X — f~1[Fr(V)]
is open in X. Hence f~!(V) is open in the subspace f~1[CI(V)]. O
Remark 1 We first discovered that relative continuity as formulated in [4]
is equivalent to the w* continuity of [1]. It is interesting that local relative
continuity is strictly weaker than local w* continuity. For example, consider
the function f : [0,1] = [~2, 2] defined by

3 .
_ )3 ifz=0
f(x)—{sin% ifz#0.

If we choose a basis consisting of open intervals of length at most relativized
to [~2, 2], it is readily seen that f is locally relatively continuous. However, f

is not locally wx continuous for any open basis. For consider the open interval
-3, 5) in the range of f, and let y be a point in (—3, 2) Then there exists an
open basis element V, contained in (—3, 1), such that y € V. Since V is open,
it is a union of open intervals. Let a be the infimum of the left endpoints
of these intervals and let § be the supremum of the right endpoints of these

intervals. Then a and 3 belong to the set Fr(V), and we see that f~1[Fr(V)]
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has zero as a limit point, but zero is not an element of f~![Fr(V)]. Thus, local
wx* continuity implies local relative continuity, but not conversely.

Corollary 1 Let f : X — Y be a function, where Y is a locally compact
Hausdorff space. If f has the closed graph property, then f is locally relatively
continuous.

PROOF. It was shown in [3] that every function with closed graph into a
locally compact Hausdorff space is locally w# continuous. a
Remark 2 In Remark 3 below we demonstrate that the condition of local
compactness on Y is essential in Corollary 1.

4 Local Relative Continuity and Connected Functions

The next result generalizes Theorem 6 of [3]. We recall that a function f :
X — Y is said to be connected if and only if the image of each connected set
in X is a connected set in Y.

Theorem 2 Let X be a locally connected space and let f : X — Y be a
connected function. If f is locally relatively continuous, f is continuous.

ProoF. Let B be an open basis for the topology on Y such that for any V'
€ B, f~1(V) is open in the subspace f~![C!(V)]. It is sufficient to show that
for any V € B, f~}(V) is open in X. Assume there exists V € B such that
f~1(V) is not open in X. Then there is a point z’ € f~*(V) such that any
open set in X containing z’ meets X — f~1(V). In the subspace topology for
the space f~1[CI(V)], there is an open basis element G containing z’ such
that G C f~1(V). Now G = H N f~![CI(V)], where H is open in X. Since
X is locally connected, there is a connected open subset U of H containing
z'. Since U is open in X and z’ € U, UN[X — f~1(V)] # 0. Thus, there is
a point z” € U such that f(z") ¢ V. Since 2" € H - G, f(z") ¢ CI(V). So
f |lv maps the connected set U into the disconnected space Y — Fr(V), but
this is impossible since f(U)N[Y = CI(V)] # 0, f(U)NV # 0, and f(U)NV
is clopen in the subspace f(U). O
The following corollary generalizes a well-known result.

Corollary 2 Let f : R = R be a real-valued function with derivative f'. Then
f' is continuous if and only if f' is locally relatively continuous.

5 Applications to Separate Continuity

In Corollary 3 we present a result involving separate continuity and local
relative continuity. First, we recall the following.
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Definition 2 Consider a function f : X x Y — Z, where X, Y, and Z are
topological spaces. For a given point (z’,y') in the domain of f, the function
fzr defined by fo:(y) = f(z',y), is called an z-section of f; and the function
fY', given by fyl(:c) = f(z,y'), is called a y-section of f. If all z-sections and
all y-sections of f are continuous, we say that f is separately continuous.

Theorem 3 Let X be a locally connected space, and let Y and Z be topologi-
cal spaces. Suppose a function f : X x Y — Z has continuous z-sections and
connected y-sections. Then if f is locally relatively continuous, f is continu-
ous.

ProoOF. There is an open basis B for the topology on Z such that for any
B € B, f~!(B) is open in the subspace f~![CI(B)]. It is sufficient to show
that for any B € B, f~!(B) is open in X x Y. Assume there exists 2 B in B
such that f~!(B) is not open in X xY . Then there is a point (z’,y’) € f~(B)
such that any open set in X x Y containing (z',y’) meets (X x Y) — f~1(B).
In the subspace topology for f~1[CI(B)] there exists an open basis element
G containing (z',y') such that G C f~}(B). Now G = G, N f~[CI(B)],
where Gy is open in X x Y. Thus, there is an open basis element U for the
topology on X, and there is an open basis element V for the topology on Y
such that (z’,y) € (U x V) C Go. Since f is continuous in y for every fixed
z, there is an open set V5 in Y such that y € V5, C V and for all y € Vj,
f(«',y) € B. Since X is locally connected, there is a connected open set Uy in
X such that 2’ € Uy C U. Since Uy x Vp is open in X xY and contains (z’,y'),
then (Ug x Vo) — f~1(B) # 0. That is, there is a point (z",y") € Uy x Vo
such that f((z",y")) ¢ B. Also, since (z”,y") ¢ G, but is contained in Gy,
f((z",y")) ¢ CI(B). But this is impossible because f¥" |y,: Uy — Z — Fr(B)
is a connected function, and f¥" |y, (Uo) N B is a nonempty clopen proper
subset of fY" (Uo). |

Corollary 3 Let X be a locally connected space. Then the function f : X x
Y — Z is continuous if and only if f is both separately continuous and locally
relatively continuous.

Remark 3 We are now in a position to show that the condition of local
compactness on the space Y is essential in Corollary 1 above. Assume that
Corollary 1 is true where the range space is Hausdorff but not locally compact.
Then by Corollary 3, it follows that each separately continuous closed graph
function f : X x Y — Z, where X is locally connected and Z is Hausdorff, is
continuous; but this is shown to be impossible by Example 2 of [5].

In order to prove Theorem 4 below, we present the following.
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Lemma 1 Let f : X — R be a real-valued function. If f has closed fibers,
then f is locally relatively continuous.

ProoF. Consider the usual basis for R. Then f is locally w#* continuous and
therefore locally relatively continuous. a
Remark 4 In the Lemma 1 above, if the space X is Hausdorff, then the
statement holds if f has compact fibers.

Theorem 4 Let f : X xY — R be a real-valued function, where X is a locally
connected space. Suppose that f has continuous z-sections and connected y-
sections. If f has closed fibers, then f is continuous.

PROOF. See Lemma 1 and Theorem 3 above. O

Corollary 4 A separately continuous real-valued function f : Rx R — R with
compact (or closed) fibers is continuous.

On the other hand, no separately continuous surjection from R x R into R
can have compact fibers. By Corollary 4, such a function would be continuous.
Now let D, = {(z,y) € Rx R|z2+y?> <r?} and let E, = {(z,y) E Rx R |
r? < 2?2 +y?} for each r > 0. If f : R x R = R is a continuous surjection
with compact fibers, f~1(0) is compact and there exists ro > 0 such that
f~1(0) C D,,. Let r = ro+1. Then since E, is connected, f(E,) is an interval
not containing 0. Further, being compact and connected, f(D,) is a closed
and bounded interval, say [a,b], containing 0. Finally, since f is surjective,
R = f(R x R) = [a,b]U f(E,), so that a — 1 € f(E,) and b+ 1 € f(E,).
But then 0 € f(E,) sincea—1 <0< b+ 1, and f(E,) is an interval. This
contradicts the fact that 0 ¢ f(E.).

6 Local Relative Continuity and Weak Continuity

Definition 3 A function f : X = Y 1s weakly continuous at ¢ € X if for any
open set V C'Y containing f(z), there exists an open set U C X containing
z such that f(U) C CI(V). If this condition is satisfied at each z € X, then f
is said to be weakly continuous.

Because local relative continuity strictly generalizes local w* continuity,
the following decomposition of continuity improves Theorem 5 of [2].
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Theorem 5 A function f : X — Y is continuous if and only if it is both
weakly continuous and locally relatively continuous.

ProoF. The necessity is clear. Sufficiency: Let B be an open basis for
the topology on Y such that f~1(V) is open in the subspace f~![CI(V)],
for each V € B. By weak continuity, f~}(V) C Int{f~}[CI(V)]}. Thus
f~1(V) is open in the subspace Int{f~![C!(V)]}, and hence is open in X,
for f~1(V) = W n f~1[CI(V)] for some open set W C X implies f~1(V) =
W N Int{f~}[CI(V)]}. Since preimages of basic open sets are open, f is
continuous. a

Every function into a hyperconnected space is weakly continuous since
open sets are dense in such a space. This yields the following.

Corollary 5 IfY is hyperconnected, f : X — Y is continuous if and only if
f 1s locally relatively continuous.

A space Y is strongly locally countably compact if each point y € Y has
a neighborhood whose closure is countably compact. Since such spaces need
not be regular (even in the presence of Hausdorff separation), the following
corollary strengthens Theorem 3.2 of [6]. Recall that a space X is Fréchet if
whenever z € X is a limit point of a subset A C X, then there is a sequence of
points in A converging to z. Also, a function f : X — Y is almost continuous
(in the sense of Husain, [7]) if for each (basic) open set V C Y, f~1(V) C
Int{CI[f~*(V)]}.

Corollary 6 Let f : X — Y be almost continuous where Y is a strongly
locally countably compact space, and X is a Fréchet space. If the graph of f,
G(f), is closed then f is continuous.

ProOOF. Let B be an open basis for the topology on Y whose members have
countably compact closures. By Theorem 2 of [2], for f to be weakly continu-
ous, it is sufficient that f~1(V) C Int{f~![CI(V)]} foreach V € B. If V € B
and z € CI{f~![CI(V)]}, there is a sequence of points (z,) in f~*[CI(V)] con-
verging to z. Since CI(V) is countably compact, the sequence (f(z,)) clusters
at some point y € CI(V). Evidently, (z,y) is a limit point of G(f) which is
closed so that y = f(z). Thus, z € f~}[CI(V)], showing that f~1[CI(V)] is
closed for each V € B. This implies that Int{CI[f~}(V)]} C Int{fL[CI(V)]}
for each V' € B, so that f is weakly continuous. Further, f is locally rela-
tively continuous and in fact, locally w# continuous since f~1[Fr(V)] is closed
for each V € B, since each Fr(V) is countably compact, being closed in the
countably compact space CI(V). By Theorem 5, f is continuous. O
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Definition 4 [9/A function f : X = Y is weakly a-continuous if f* : X* —
Y is weakly continuous where the underlying set of the space X* is X, a
subset A C X is open in X, or equivalently a-open in X, if and only if
A C Int{Cl[Int(A)]}, and f*(z) = f(z) for each z € X.

The condition of weak a-continuity is strictly weaker than that of weak
continuity. ([9] and [8])

Theorem 6 A function f : X — Y is continuous if and only if it is both
weakly a-continuous and locally relatively continuous.

PRrROOF. The necessity is clear. For the sufficiency, let B be an open base for
the topology on Y such that f~(V) is open in the subspace f~1[CI(V)] for
each V € B. Let 7 be the topology on X and let 7 be the a-topology for
X. Then 7 C 7* and for each V € B, f~1(V) is open in f~1[CI(V)], with
F~Y[CI(V)] interpreted as a subspace of (X, 7*) = X*. Thatis, f~}(V) = Wn
FL[CI(V)] for some open set W € 7 C 7. Now f* : X* — Y, defined by
f*(z) = f(z) for each = € X, is locally relatively continuous and also weakly
continuous (since f is weakly a-continuous). By Theorem 5, f* is continuous,
and this implies [9] that f is weakly continuous. Again by Theorem 5, f is
continuous. a
Remark 5 Again, because local relative continuity is strictly weaker than local
wx continuity, Theorem 6 improves Theorem 1 of [8]. A remark given in [§]
shows that even if f : X — Y is weakly continuous, f may fail to be continuous
even if f* : X® — Y is wx continuous. Thus, local relative continuity for f
cannot be replaced by local relative continuity for f¢ in Theorem 6.
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