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 ON LOCAL RELATIVE CONTINUITY

 Abstract

 A local version of the relative continuity of J. Chew and J. Tong
 is introduced and observed to have applications to connected functions
 and separate continuity. A strong version of Levine 's decomposition of
 continuity is also obtained.

 1 Introduction

 In [1] N. Levine introduced the notions of w* continuity and weak continuity.
 In [2] the second-named author introduced the notion of local w* continuity
 and showed that w* continuity implies local w* continuity, but not conversely.
 Here we present a strict generalization of local w* continuity, which we call
 local relative continuity. Local relative continuity is a generalization of the
 closed graph property for functions of the form / : X - ► Y, where X is a
 space and Y is locally compact and Hausdorff. Results are presented which
 apply the notion of local relative continuity in the contexts of the closed graph
 property, connected functions, separate and joint continuity, weak continuity,
 and related concepts, including certain decompositions of continuity.

 Throughout this paper, a function on a topological space X into a topo-
 logical space Y, will be represented by / : X - > Y, where X and Y have no
 particular properties unless otherwise indicated.

 2 Preliminaries and Definitions

 In [3] it was shown that, for a function / : X - » Y, where Y is a locally
 compact Hausdorff space, if / has the closed-graph property, then / is locally
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 w* continuous. A function / : X - > Y is locally w* continuous if and only
 if there exists an open basis B for the topology on Y such that for any V
 in B, f~1[Fr(V)] is closed in Xi where Fr denotes the frontier operator. If
 f'l[Fr(V)] is closed for every open V C Y, then / is said to be w* continuous
 [1]. Here we further generalize the closed-graph property by showing that local
 w* continuity implies local relative continuity, but not conversely.
 In [4] a function / : X - ¥ Y is called relatively continuous at x G X if and

 only if for any open set V Ç Y, where f(x) is contained in V, the set f~l(V)
 is open in the subspace f~1[Cl(V)'i where CI denotes the closure operator.
 If this condition is satisfied for each x G X, then / is said to be relatively
 continuous. The notion of relative continuity is generalized by the following:

 Definition 1 A function f : X -¥ Y is locally relatively continuous if there
 exists an open basis B for the topology on Y such that /-1(V) is open in the
 subspace f~l[Cl(V)' for any V G B.

 3 A Generalization of the Closed-Graph Property

 Theorem 1 If f : X - » Y is locally w* continuous , then f is locally relatively
 continuous.

 Proof. There is an open basis B for the topology on Y such that for any
 V E B, f~1[Fr(V)] is closed in X. Let V be any set in B. Then V =
 Cl(V) - Fr{V), and f-^V) = f-^CĶV)} - /_1[Fr(V)] = f-l[Cl{V)] fi
 (X - / 1[i?7*(V^)])- Since / is locally w* continuous, the set X - f~1[Fr(V)]
 is open in X. Hence /-1(K) is open in the subspace /~1[C/(V)]. □
 Remark 1 We first, discovered that relative continuity as formulated in [4]
 is equivalent to the w* continuity of [1]. It is interesting that local relative
 continuity is strictly weaker than local w * continuity. For example, consider
 the function / : [0,1]-» [-2, 2] defined by

 /(*) = P . ifl = 0
 ļsin ~ . if x 0.

 If we choose a basis consisting of open intervals of length at most ~ relativized
 to [-2, 2], it is readily seen that / is locally relatively continuous. However, /
 is not locally w* continuous for any open basis. For consider the open interval
 (- |) in the range of /, and let y be a point in (- 1, |). Then there exists an
 open basis element V, contained in (- |, |), such that y G V- Since V is open,
 it is a union of open intervals. Let a be the infimum of the left endpoints
 of these intervals and let ß be the supremum of the right endpoints of these
 intervals. Then a and ß belong to the set Fr(V), and we see that f1[Fr(V)]
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 has zero as a limit point, but zero is not an element of f~1[Fr(V)]. Thus, local
 w* continuity implies local relative continuity, but not conversely.

 Corollary 1 Let f : X -ï Y be a function , where Y is a locally compact
 Hausdorff space. If f has the closed graph property , then f is locally relatively
 continuous .

 Proof. It was shown in [3] that every function with closed graph into a
 locally compact Hausdorff space is locally w* continuous. □
 Remark 2 In Remark 3 below we demonstrate that the condition of local

 compactness on Y is essential in Corollary 1.

 4 Local Relative Continuity and Connected Functions

 The next result generalizes Theorem 6 of [3]. We recall that a function / :
 X -¥ Y is said to be connected if and only if the image of each connected set
 in X is a connected set in Y .

 Theorem 2 Let X be a locally connected space and let f : X - ► Y be a
 connected function. If f is locally relatively continuous , / is continuous.

 Proof. Let B be an open basis for the topology on Y such that for any V
 G B, f~l(V) is open in the subspace f~1[Cl(V)'. It is sufficient to show that
 for any V G B, /_1(V) is open in X. Assume there exists V G B such that
 /"1(V) is not open in X. Then there is a point x' G Z"1 (V') such that any
 open set in X containing x' meets X - /_1(V). In the subspace topology for
 the space f~1[Cl(V)'> there is an open basis element G containing x' such
 that G Ç f-l'v). Now G = HD /"ł[CZ(^)], where H is open in X. Since
 X is locally connected, there is a connected open subset U oî H containing
 x' . Since U is open in X and x* £ {/, U fi [X - f~1(V)] Î 0- Thus, there is
 a point x" G U such that f(x") £ V. Since x" G H - G, f{x") £ Cl(V). So
 / I u maps the connected set U into the disconnected space Y - Fr(V), but
 this is impossible since f(U) n [Y - Cl{V)' ¿ 0, f(U) and f(U) H V
 is clopen in the subspace /(Č7). □

 The following corollary generalizes a well-known result.

 Corollary 2 Let f : R-¥ R be a real-valued function with derivative /'. Then
 f is continuous if and only if f is locally relatively continuous.

 5 Applications to Separate Continuity

 In Corollary 3 we present a result involving separate continuity and local
 relative continuity. First, we recall the following.
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 Definition 2 Consider a function f : X x Y -ï Z, where X , Y, and Z are
 topological spaces. For a given point (s', y') in the domain of f, the function
 fx / defined by fx'(y) = f(x' }y), is called an x-section of f; and the function
 fy , given by fy (x) = f(x,y'), is called a y-section of f. If all x-sections and
 all y-sections of f are continuous, we say that f is separately continuous.

 Theorem 3 Let X be a locally connected space , and let Y and Z be topologi-
 cal spaces. Suppose a function f : X x Y - ► Z has continuous x-sections and
 connected y-sections. Then if f is locally relatively continuous , f is continu-
 ous.

 Proof. There is an open basis B for the topology on Z such that for any
 B G B, f~l(B) is open in the subspace f~1[Cl(B)]. It is sufficient to show
 that for any BE B, f"1(B) is open in X x Y . Assume there exists a B in B
 such that f"l(B) is not open in X xY . Then there is a point (x;, t/) G f~l(B)
 such that any open set in X x Y containing (a:', t/) meets (X x Y) - f"1(B).
 In the subspace topology for f~l[Cl(B)' there exists an open basis element
 G containing (x',y') such that G Ç f~l(B). Now G = Go n/~1[C/(S)],
 where Go is open in X x Y. Thus, there is an open basis element U for the
 topology on X , and there is an open basis element V for the topology on Y
 such that (x',*/7) G ( U x V) Ç Go- Since / is continuous in y for every fixed
 x, there is an open set Vó in Y such that y' £ Vo Ç V and for all y G Vb,
 f{x'ì y) € B. Since X is locally connected, there is a connected open set Uo in
 X such that x' e U0 Ç U. Since Uo x Vo is open in X x Y and contains (x'y y'),
 then (Uo x Vo) - f~l{B) 1= 0- That is, there is a point (x" ,y") G Uo x Vo
 such that /((x", y")) £ B. Also, since (x'^y") £ G, but is contained in Go,
 /((x", y")) ķ. Cl(B). But this is impossible because fy" |(/0: Uo Z - Fr(B)
 is a connected function, and fy 'u0 (Uo) fl B is a nonempty clopen proper
 subset of fy" (Uo). □

 Corollary 3 Let X be a locally connected space. Then the function f : X x
 Y - > Z is continuous if and only if f is both separately continuous and locally
 relatively continuous.

 Remark 3 We are now in a position to show that the condition of local
 compactness on the space Y is essential in Corollary 1 above. Assume that
 Corollary 1 is true where the range space is Hausdorff but not locally compact.
 Then by Corollary 3, it follows that each separately continuous closed graph
 function / : X x Y - > Z, where X is locally connected and Z is Hausdorff, is
 continuous; but this is shown to be impossible by Example 2 of [5].

 In order to prove Theorem 4 below, we present the following.
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 Lemma 1 Let f : X - ► R be a real-valued function. If f has closed fibers,
 then f is locally relatively continuous.

 Proof. Consider the usual basis for R. Then / is locally w* continuous and
 therefore locally relatively continuous. □
 Remark 4 In the Lemma 1 above, if the space X is HausdorfF, then the
 statement holds if / has compact fibers.

 Theorem 4 Let f : X x Y -*• fi be a real-valued function, where X is a locally
 connected space. Suppose that f has continuous x -sections and connected y-
 sections. If f has closed fibers, then f is continuous.

 Proof. See Lemma 1 and Theorem 3 above. □

 Corollary 4 A separately continuous real-valued function / : fixfi - ► fi with
 compact (or closed) fibers is continuous.

 On the other hand, no separately continuous surjection from fix R into R
 can have compact fibers. By Corollary 4, such a function would be continuous.
 Now let Dr = {(x, y) e R* R'x2 + y2 < r2} and let Er = {(x, y) Ç R x R |
 r2 < x2 + y2} for each r>0. If / : fi x fi - ► fi is a continuous surjection
 with compact fibers, /-1(0) is compact and there exists ro > 0 such that
 f-l(0) Ç Dro. Let r = ro + 1. Then since Er is connected, f(Er) is an interval
 not containing 0. Further, being compact and connected, f(Dr ) is a closed
 and bounded interval, say [a, 6], containing 0. Finally, since / is surjective,
 fi = /(fi x fi) = [a, 6] U /(¿?r), so that a - 16 f(Er ) and 6 + 1 6 f{Er).
 But then 0 € f{Er) since a-l<0<6+l, and f{Er) is an interval. This
 contradicts the fact that 0 ^ f(Er).

 6 Local Relative Continuity and Weak Continuity

 Definition 3 A function f : X - ► Y is weakly continuous at x G X if for any
 open set V Ç Y containing f(x), there exists an open set U Ç X containing
 x such that f(U) Ç Cl(V). If this condition is satisfied at each x 6 X, then f
 is said to be weakly continuous.

 Because local relative continuity strictly generalizes local w* continuity,
 the following decomposition of continuity improves Theorem 5 of [2] .
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 Theorem 5 A function f : X - > Y is continuous if and only if it is both
 weakly continuous and locally relatively continuous.

 Proof. The necessity is clear. Sufficiency: Let B be an open basis for
 the topology on Y such that /~1(V) is open in the subspace f"1[Cl(V)')
 for each V £ B. By weak continuity, /"1(V) Ç Int{f~1[Cl(V)]}. Thus
 f~l{V) is open in the subspace Int{f~l [C7(V)]}, and hence is open in X ,
 for f~l(V) = W fi f~1[Cl(V)' for some open set W Ç X implies f~l(V) =
 W fi Int{f~l[Cl(V)]}. Since preimages of basic open sets are open, / is
 continuous. □

 Every function into a hyperconnected space is weakly continuous since
 open sets are dense in such a space. This yields the following.

 Corollary 5 If Y is hyperconnected, f : X - ► Y is continuous if and only if
 f is locally relatively continuous .

 A space Y is strongly locally countably compact if each point y E Y has
 a neighborhood whose closure is countably compact. Since such spaces need
 not be regular (even in the presence of Hausdorff separation), the following
 corollary strengthens Theorem 3.2 of [6]. Recall that a space X is Frechet if
 whenever x £ X is a limit point of a subset AÇ X, then there is a sequence of
 points in A converging to x. Also, a function / : X - ► Y is almost continuous
 (in the sense of Husain, [7]) if for each (basic) open set V Ç Y, /-1(V) Ç
 inĄcąrHy)]}.

 Corollary 6 Let f : X - ► Y be almost continuous where Y is a strongly
 locally countably compact space, and X is a Fréchet space. If the graph of f ,
 G(f), is closed then f is continuous.

 Proof. Let B be an open basis for the topology on Y whose members have
 countably compact closures. By Theorem 2 of [2], for / to be weakly continu-
 ous, it is sufficient that /-1(^) Ç Int{f~l[Cl(V)]} for each V G B. If V G B
 and x £ Cl{f~1[Cl(V)]} , there is a sequence of points (xn) in f~1[Cl(V)] con-
 verging to x. Since Cl(V) is countably compact, the sequence {f{xn)) clusters
 at some point y £ Cl(V). Evidently, (x,y) is a limit point of G(f) which is
 closed so that y = f{x). Thus, x £ /~1[C/(V)], showing that f~l[Cl(V)' is
 closed for each V £ B. This implies that Int{Cl[f~l(V)]} Ç Int{f~l[Cl(V)]}
 for each V E B, so that / is weakly continuous. Further, / is locally rela-
 tively continuous and in fact, locally w * continuous since f~~1[Fr(V)] is closed
 for each V £ B, since each Fr(V) is countably compact, being closed in the
 countably compact space Cl(V). By Theorem 5, / is continuous. □
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 Definition 4 [9] A function f : X - ► Y is weakly a-continuous if fa : Xa ->
 Y is weakly continuous where the underlying set of the space Xa is X, a
 subset A Ç X is open in Xa , or equivalently a-open in X, if and only if
 A Ç Int{Cl[Int(A)]} , and fa(x) = f(x) for each x G X.

 The condition of weak a-continuity is strictly weaker than that of weak
 continuity. ([9] and [8])

 Theorem 6 A function f : X - ► Y is continuous if and only if it is both
 weakly a-continuous and locally relatively continuous.

 Proof. The necessity is clear. For the sufficiency, let B be an open base for
 the topology on Y such that / "1(V) is open in the subspace f~l[Cl(V)' for
 each V G B. Let r be the topology on X and let ra be the a- topology for
 X. Then r Ç ra and for each V G B, f~l(V) is open in f~1[Cl(V)], with
 /_1[C7(V)] interpreted as a subspace of ( X , ra) = Xa . That is, /"1(V) = WC'
 f [Cl{V)' for some open set W G r Ç ra. Now fa : Xa -* Y , defined by
 fa(x) = /(x) for each x G X, is locally relatively continuous and also weakly
 continuous (since / is weakly a-continuous). By Theorem 5, fa is continuous,
 and this implies [9] that / is weakly continuous. Again by Theorem 5, / is
 continuous. □

 Remark 5 Again, because local relative continuity is strictly weaker than local
 w* continuity, Theorem 6 improves Theorem 1 of [8]. A remark given in [8]
 shows that even if / : X - y Y is weakly continuous, / may fail to be continuous
 even if fa : Xa - > Y is w* continuous. Thus, local relative continuity for /
 cannot be replaced by local relative continuity for fa in Theorem 6.
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