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 A NOTE ON ADDITIVE FUNCTIONS OF

 INTERVALS

 Abstract

 If F is a continuous function of intervals in Rm, then its distribution
 function is continuous. The converse is true if m = 1 but false if m > 2.

 In the present note we prove these facts and we explain why the one-
 dimensional case is an exception.

 An interval is always a nonempty compact interval in Mm, i.e., the product
 m

 [ai , 6i ; . . . ; am , bm ] = ļļ [a» , 6{]
 i=i

 where at-,6,- G M and a,- < 6,- for i = 1, . . . , m. A figure is the union of
 a nonempty finite family of intervals. The closure, interior, boundary, and
 m-dimensional HausdorfF measure 7im of a figure A C Rm is denoted by
 A~ , A °, d A and |j4|, respectively; the perimeter of A is the (m- l)-dimensional
 Hausdorff measure Hm -1 of its essential boundary d*(A) = 9[(i4~)°], and it is
 denoted by ''A''. A figure A with 'A' = 0 (equivalently, A0 = 0 or d*(A) = 0)
 is called degenerate. We say figures A and B overlap if An B is nondegenerate.

 Throughout this note, we select a fixed interval A = [ai,6i;. . .;am,6m].
 A function F defined on the family of all subfigures of A is called an additive
 function in A whenever

 F(BUC) = F{B) + F{C)

 for each pair B,C of nonoverlapping subfigures of A. Clearly, each additive
 function in A vanishes on every degenerate subfigure of A. If F is an additive
 function in A and x = (xi , . . . , xm ) is a point in A, we let

 f iX) = ) ^1 > • • ■ > am ì ^rn])
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 and call the function / :i4 f{x), defined on A, the distribution function of
 F. A standard calculation shows that for each interval [ci, d' ' . . . ; cm, dm] C A,
 we obtain

 F([cudi;...;cm>dm]) = £(-1 y(x~>f(x)

 where the summation is taken over all points x = (xi, . . . , xm) such that for
 i = 1, . . . , m, either x¿ = c,- or xt- = , and <r(x) is the cardinality of the set
 {¿ : Xi = c,}. Since F is uniquely determined by its values on intervals, it is
 also uniquely determined by its distribution function.

 In the theory of conditionally convergent integrals, a prominent role is
 played by additive functions that are continuous in the following sense (cf. [1,
 Section 11.2]).

 Definition 1 An additive function F in A is continuous if given e > 0, there
 is an 71 > 0 such that |-F(i?)| < e for each figure B C A with ||jB|| < 1/e and
 1*1 < n-

 It is easy to see that the distribution function of a continuous additive
 function in A is continuous. The converse is true if m = 1 but false if m >

 2. We prove these facts, and explain why the one-dimensional case is an
 exception.

 Proposition 2 Assume m = 1, and let f be the distribution function of an
 additive function F in A. If f is continuous, then so is F.

 Proof. Choose an e > 0 and use the uniform continuity of / to find an rj > 0
 so that 'f(x) - f(y)' < e2 for each x, y G A with |x - y' < r¡. If B is a subfigure
 of A, then B = U£=i[cfc> where c' < d' < • • • < cn < dn are points of A ,
 and ||B|| equals twice the number of nondegenerate intervals [cfc,cf/-]. Thus

 F(B) = j2[f(dk)-f(ck)]<e2''B''<e
 k = l

 whenever ''B'' < 1/e and 'B' < rj. □

 Example 3 We assume m = 2; the construction for m > 2 is similar. Let.
 A = [0, l]2, and for k = 1, 2, . . . and t E [0, 1], set

 /(ť,0) = f(0,t) = f(2~k,2~k) = 0 and /(2"*+1, 2~k) = 1/k .

 Since / is a continuous function on a closed set

 C = {(*, 0), (CM), (2-*, 2-*), (2~k+ï ,2~k) : t £ [0, 1], k = 1, 2, . . .}
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 contained in A, it has a continuous extension to the whole of A , still denoted
 by /. Define an additive function in A by setting

 F([a, 6] X [c, d') = /(a, c) + /(6, d) - /(a, d) - /(6, c)

 for each interval [a, 6] x [c, d] C A , and observe that / is the distribution
 function of F. To see that F is not continuous, let Ak = [2~*, 2~*+1] x [0, 2~fc]
 for fc = 1, 2, - As

 ex? oo -

 Eí,(^) = Ei = +
 *=1 *=1

 for each integer n > 1 there is a integer pn > n such that > 1. If
 Bn = Ufcln then

 oo

 ||B„|| < 4^2-fc = 8-2-n,
 k=n

 'Bn' < £2-" = I -4-"
 k=n

 for n = 1, 2, . . . . It follows that F is, indeed, discontinuous.

 In dimension one, the connection between an additive function F in A and
 its distribution function / can be cast differently. For a figure B C A, denote
 by i 'b its exterior unit normal , i.e., the function associating to each x G d*B
 the number +1 or -1 according to whether x is the right or left end-point of
 a nondegenerate connected component of B. Now viewing / as a vector field
 in A , we see that F(B) = / • vb ďH°. With this interpretation of /, the
 next proposition (cf. [1, Proposition 11.2.8]) illuminates Proposition 2.

 Proposition 4 Let v be a continuous vector field in A , and for each figure
 B C A let F(B) = fd*Bv ■ i/ß(tHm~l- Then F is a continuous additive
 function in A.

 PROOF. As the additivity of F is clear, choose an e > 0 and find a vector field
 w whose coordinates are polynomials and such that |v(x) - iu(:r)| < e2/2 for
 all x £ A. Let a be a positive bound of |divw| on A, and set 77 = e/(2a). If
 B C A is a figure with [|5|| < 1/e and 'B' < 77, the divergence theorem and
 Schwartz inequality give

 |jP(ä)| < If (v - w) ■ vB dn™-1 + 'f ¿w w dnm
 'J d* (B) I 'Jb

 < ^||5|| + a|S|<£,
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 end the proof is completed. □

 The author wishes to acknowledge useful discussions with Washek Pfeffer
 regarding this note.
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