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 REGULARITY OF LOCALLY LIPSCHITZ

 FUNCTIONS ON THE LINE

 Abstract

 A locally Lipschitz function is regular at points where its lower Dini
 and Clarke derivatives coincide. For a locally Lipschitz function on an
 open interval the set of points where the function is regular but not
 differentiable is at most countable. By constructing a set with unusual
 metric density properties, and integrating its characteristic function, we
 produce a locally Lipschitz function which is nowhere regular.

 0 Introduction

 Since the time of Lebesgue it has been known that there is a strong connection
 between differentiability properties of locally Lipschitz functions on the line
 and the metric density behaviour of measurable sets. It is well known that
 locally Lipschitz functions on the line are differentiable almost everywhere.
 Regularity (defined below) requires some form of continuity amongst these
 derivatives. The purpose of this note is to investigate how often a locally Lip-
 schitz function must be regular, and make connections to the possible metric
 density behaviour of measurable sets.

 A function / : I - > R, where I is an open interval, is locally Lipschitz if
 for each x E I there exist A', S > 0 such that

 I f(y) - f(z) I < K'y - z' for every y, z E I C' (x - 6, x + 6).

 The upper and lower right Dini derivatives of / at x are

 /+(«) = lim-p n* + kl-'W and /+(,) = fan bf/(* + *>" h /W. /j_f o+ " /i-*o+ h
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 Similarly the upper and lower left Dini derivatives are

 rW = lim.up/('~''>~/W »d /■(») = lim tof ~ ~ /W .
 h-+o+ h h^0+ h

 The function is differentiable from the right at x if /+(x) = /L§- (x) , and this
 common value is denoted /+(x). The left derivative occurs when - /~(x) =
 - /_(x) and this value is denoted /l(x). The function is differentiable when
 fĻ(x) = /L(x), and we simply write /'(x) in this case.
 In 1975 Clarke [3] introduced a directional derivative for locally Lipschitz

 functions on a Banach space. On the line this derivative may be better known
 as the strong or sharp derivative. The right and left' Clarke derivatives of / at
 x are

 /;(«) + v ' = '¡m*>pny + h)-nv) and f (,)=ltaWâiMÍ v ' + v ' y->* h v ' »-* h
 /»-►0+ h-+>0+

 and these are finite since the function is locally Lipschitz. Clearly ft(x) <
 f+{x). Also fļ is upper semi-continuous, while ft is lower semi-continuous.
 We say that / is regular at x if /+(x) = /+(x) and ft (x) = - /_ (x), and that
 / is pseudo-regular if /+(x) = /+(x) and ft (x) = - /" (x) [1]. The function is
 strictly differentiable at x if ft{x) = /+(x). If / is regular and differentiable
 at x then it is strictly differentiable at x.
 It is easy to see that pseudo-regularity corresponds to upper semi-continuity

 of the upper Dini derivatives, and that regularity corresponds to upper semi-
 continuity of the lower Dini derivatives. Strict differentiability, then, coincides
 with continuity of all the Dini derivatives. Young and Jurek established that
 for a locally Lipschitz function / on an open interval I the set of points where
 / is pseudo-regular is a dense G s subset of its domain [9, pl51]. One way to
 see this is to consider [4] ,

 x+, ^ f(x + h) ¿ -/(x) ^
 /+ x+, (x) ^ = sup

 o <h<ķ h

 which is lower semi-continuous. Then /+(x) = lim^oo fp{x), so the upper
 right Dini derivative is the pointwise limit of lower semi-continuous functions,
 hence is upper semi-continuous at the points of a dense G s set. A similar
 argument on the left completes the proof. However this style of argument
 fails for regularity, since it expresses the lower Dini derivatives as pointwise
 limits of upper semi-continuous functions, and there is no reason to expect
 these to be upper semi-continuous anywhere. A positive result along these
 lines, however, is that the set of points where the function is differentiable but
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 not strictly differentiable is of the first category. In particular, an everywhere
 differentiable function is regular at the points of a dense G s set, since pseudo-
 regularity, regularity and strict differentiability coincide for such a function
 m-

 The evidence above suggests there is no reason to expect a locally Lipschitz
 function on the line to be regular anywhere. In our second section we recall
 that the set of points where the function is regular but not differentiable
 is at most countable. A standard construction (see, for example [6, p97])
 immediately yields a function which is regular at no more than countably
 many points. Perturbing this function can lead to a nowhere regular function.
 In the third section we look at a particular example of a function defined as the
 integral of a characteristic function of a measurable set and determine that it
 has no regular points. This section has the added advantage of constructing a
 set with abhorrent metric density behaviour - in the terminology introduced
 there we create a measurable set with no metric boundary.

 1 Regular, Non-Differentiable Points are Countable

 The following theorem is a special case of a classical result of Young and Levi,
 [7, p261] .

 Theorem 1.1 Let f ģ. I M be locally Lipschitz on the open interval /, then
 the set of points where f is regular but not (strictly) differentiable is at most
 countable.

 We note the implication for a regular function, such as a convex function.

 Corollary 1.2 A regular locally Lipschitz function on an open interval is dif-
 ferentiable at all but a countable set of points.

 Rockafellar [6, p97] considers a locally Lipschitz function defined in the
 following way. Let E be a measurable subset of M with the property that both
 E and Ec have positive measure in every interval. We shall call such a set
 ubiquitous. Then define

 /(*) = / X*(*)dA(ť) Jo

 where A is Lebesgue's measure. It follows from well known results in measure
 theory [2] that / is locally Lipschitz with fļ(x) = 1 and fl(x) = 0 for every
 X £ M. Thus no regular point can be differentiable, and by Theorem 1.1 there
 are at most countably many regular points.
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 In order to construct a nowhere regular function it suffices to perturb
 the function / above to destroy regularity at those points which may possess
 it. Take a function g which is everywhere regular except at the origin. For
 example

 , x fx2sin(l/x) for x ^ 0
 9W , x = 'o for 1 = 0.

 Let xn be an enumeration of the regular points of the function /. Then a
 nowhere regular function is obtained by perturbing / to

 f(x) = f(x) + ¿ ^g(x - xn).
 n = l

 It would be of interest to know, however, whether it is possible to choose a
 ubiquitous set E so that the function obtained by integrating its characteristic
 function is nowhere regular. The following section is dedicated to constructing
 such a ubiquitous set. Such a set E necessarily has strange metric density
 properties. Most results about the metric density of measurable sets on the
 line come modulo a set of measure zero, and are therefore not applicable for
 our purpose. We will therefore need to develop a construction which allows
 precise analysis of the metric density behaviour at every point on the line.

 2 A Nowhere Regular Function Constructed via a Ubiq-
 uitous Set

 2.1 Metric Densities

 We introduce the following notions as natural generalisations of the concept
 of metric density studied elsewhere [5]. Given a measurable set E C M , the
 upper and lower right metric densities of E at x are

 d+ (E,x) = lim sup A(^ n [*» * + hi) and d+(E,x) = lim inf *(£<">[*.* + ft])
 /j

 where À is Lebesgue's measure. When these are equal we refer to the right
 (metric) density as d'+(Ey x). Similarly on the left we have

 d~(E,x) = limsupA(£;n[x~/''a:]) and d.(E,x) = lim inf A(g ° h' x])
 /i, - >>o+ /»-►0+ h

 with left density denoted dL(i?,x). When left and right densities exist and
 are equal we have the usual metric density. Note however that the definition
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 of metric density of E at x is

 i{EtZ)= v ' ; Um A(gn[» ->,» + *]) v ' ; /1-+0+ 2h

 so it is possible for the metric density to exist even though the right and left
 densities are not equal, nor even exist.

 We proceed to invent various notions of the measure theoretic interior and
 boundary of a set in R. The metric interior of E is

 minti? = {x £ R : <f'( E , x) = 1}

 and the metric boundary of E is

 mbdry# = {x e R : 'd'+(E,x) - dL(E,x)'= 1}.

 So x is in the metric interior of E if it is a point of density of E from both
 right and left, and is in the metric boundary of E if it is a point of density of
 E from one side, and a point of density of Ec from the other side. Also note
 that mbdry E = mbdry Ec, and that some points may not be in the metric
 interior or boundary of either E or Ec .

 We could also consider points which are on the 'edge' of E and Ec in a
 weaker sense. Consider those x for which d+(£' x) = d*(Ec> x) = 1, so x is in
 some sense on the left edge of both E and Ec. If we simultaneously demand
 d~ (E, x) = d' ~ ( Ec , x) = 1 we shall say x is in the fuzzy metric boundary of E.

 As the notation indicates there is a direct connection between these metric
 densities and the various derivatives of the function

 /(*) = f XE(t)dMt)
 Jo

 although for 'left' quantities there is the unfortunate appearance of minus
 signs. Each of the metrically defined sets bares a relationship to the differ-
 entiability of the function /. The metric interior of E corresponds to those
 points where /'(x) = 1, and the metric interior of Ec to where /'(x ) = 0. The
 metric boundary of E is those points where either / or - / is regular but not
 different iable. The fuzzy metric boundary of E is those points where both /
 and - / are pseudo-regular but. not differentiable. It may seem that the fuzzy
 metric boundary of a set is likely to be small, and of course this is true in
 measure, however for a ubiquitous set the fuzzy metric boundary is a dense
 Gs set [9, pl51].

 Henceforth we will deal freely in the language of metric densities rather
 than derivatives since our construction is of the ubiquitous set E rather than
 the locally Lipschitz function it generates.
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 2.2 Density Behaviour of Some Cantor Sets

 The building blocks of the set we ultimately wish to construct are Cantor sets
 of a specific type. We study their density properties as a precursor to the
 horrendous calculation to come. An authoritative account of the construction

 of Cantor sets and their binary representation may be found in [8].
 Consider a Cantor set Ka of measure (1 - a) in the interval [0,1] created in

 the following fashion. Set K% = [0, 1] and create K% by removing the middle
 open interval of length from each of the 2n~1 closed intervals comprising
 KZ'1. Now set Ka = n~=0#2-

 Each k € Ka can be specified in the usual way by a unique binary string
 i G N. We consider the relationship between k and its binary representation
 ki. Firstly consider k G Ka such that fc,- = 0 for all i > N. Then in the set

 K# there are 2N closed intervals whose total measure is (1 - q22j71), of which
 k{2N~l lie to the left of k. So the measure of closed intervals to the left

 of k is

 f>-y
 The measure of open intervals in Ka to the left of k is

 5>lK1 + í + 2x¿+ ť=l

 Adding the measures of the open and closed intervals to the left of k and
 simplifying gives us

 If we allow N - ► oo we obtain a formula valid for any k G Kay namely

 00 7 °° i

 *=1 »=1

 The measure of I'a in the interval [0,k] is given by the first, of these two terms.

 Lemma 2.1 The metric density behaviour of the Cantor set Ka is

 (i) mint K% - K%

 (ii) mint. Ka = {k G Ka - lim,_+oo k{ doesn't exist }

 (Hi) mbdryifa = {k G Ka ' lim,_*oo = 0} U {k G Ka ' lim,-^ ki = 1} .
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 Proof. The inclusion K £ C mint Kļ is clear from the fact that K% is open.
 Equality will follow from establishing (ii) and (iii) . Consider the right metric
 density at some k G Ka. If lim, .+00 k{ = 1 then k is the left endpoint of some
 open interval in Kļ, so d'+(Ka,k ) = 0. For any other k G Ka we consider the
 function

 '(KQn[k,k + h])
 h

 and note that it is monotone while k + h traverses an open interval in Kļ. We
 may therefore suppose that k + h = m G Ka without sacrificing any of the
 extremes of the function. If we do this, and let k, m have binary representations
 k{ , mi in Ka , then we find

 A {Ka fi [*,m]) =

 m-k =

 which can be written as where R is the ratio

 ~ ki)/V
 1 - a - if) /2* '

 Now as m - » k+ the early terms of their binary representations agree, so we
 have R - > 0 and therefore d,+ (K<x1 k) = 1.

 Noting that by symmetry the left density at k equals the right density at
 1 - k, and that the binary representation of 1 - k is obtained by changing each
 digit in the binary representation of &, that is

 (1 - k)i = k{ - hi mod 2,

 we see that (ii) and (iii) follow. □
 In differentiability terms, this shows that if / is the function obtained by

 integrating the characteristic function of Ka , then / has derivative zero on
 and derivative one when lim» -»o© k¡ doesn't exist. It is regular (but not

 differentiate) when lim^oo /?» = 0, a countable set. When lim^o© k{ = 1 the
 function - / is regular but not differentiate.

 2.3 Constructing a Ubiquitous Set

 Recall a measurable set E is ubiquitous if both E and Ec have positive measure
 in every interval. The general scheme we use to construct such sets is as follows.
 Begin with a Cantor set of positive measure. Its complement consists of open
 intervals into each of which we insert a copy of another Cantor set of positive
 measure, appropriately scaled to the length of the interval. Repeating this
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 process, with care that the resulting set doesn't become too full in measure,
 yields a ubiquitous set.

 More formally, let Kn be a sequence of Cantor sets of type Ka considered
 in section 2.2 above. (There is nothing particularly special about these sets
 other than ease of computation.) Set = Km and define

 Enm+1 = Enm U ( U r=1 <4,- + (C, - C.KWi) (n > m)

 where is an enumeration of the open intervals comprising ( E £)c.
 Finally set Em = UJJĻ mE^y so Em is a set created according to the scheme
 outlined above, commencing with the Cantor set Km and using the subsequent
 Cantor set from the sequence at each stage of the construction. Notice that
 each set Em contains many scaled copies of the set Em+ 1- In fact

 Em = Km U ( U?sl aZ + (C,- - O^m+i) (** )

 and applying this formula recursively we see that

 Em n [eC+fc, b%tk] = aZtk + (b"tk - a"tk)Em+k+1.

 That is to say Em contains shrunk copies of En for every n > m. Further, for
 any open interval J C [0, 1] there exists a k such that {a™tk >Knfk) ^ J ^or
 some i. Therefore Em is ubiquitous provided 0 < A(£,n) < 1 for all n> m.

 Now we concentrate on just one such system of sets. Suppose an are the
 values of the parameter a corresponding to the Cantor sets Kn , and are
 the measures of the sets Eļ . Then

 Mn+l = Pn + (1 - fin) {I ~ <*n + l)-

 If we impose /in = yrrr, so that the measure of E' = we find an =
 This gives the measure of Kn to be > an<^ from the recurrence (**) relating
 the sets Em to ¿?m+i we have

 , / r, X 1 2m + 1 . . _ .
 ( / r, m) X ~ 2m +2 + 2m + 2 . ( . _ +1)' .

 Given that A(i?i) = ^ we compute the measure of Em to be 2™+2 • Since
 this is always strictly between 0 and 1 we conclude that all the sets Em are
 ubiquitous.



 794 Scott Sciffer

 2.4 Binary Addresses for Our Ubiquitous Set

 We aim to develop a system of binary addresses for points in (0,1) in such a
 way that the density behaviour of the ubiquitous set E' , constructed in section
 2.3 above, can be characterised by the asymptotic behaviour of the address.
 (Compare with Lemma 2.1.)

 For any x G (0, 1) let xn be the largest element of Eļ less than x. If
 X E E' then xn is eventually constant and equal to x, otherwise xn is strictly
 increasing to x. Setting x° = 0, for those xn > x"""1 we have

 xnea^ + {b^-a1j')Kn
 for some j, and xn has a unique binary string describing its position within
 this Cantor set. Let this string be xļ' Further, this string does not consist
 entirely of l's, since then xn = ft?"1, which is an element of E"'1, and hence
 xn-1 > 6 J"1 = xn which is a contradiction. For those n such that xn = xn_1
 set x? = 0 for all i. In this fashion every x G (0, 1) is described by a unique
 sequence of binary strings which we'll call its binary address. Note that the
 sequence xn becomes constant if and only if x 6 E' and is strictly increasing
 if and only if x G E'. In the former case the binary strings x-1 are zero for
 any sufficiently large n. In the latter case xn is always the left endpoint of an
 open interval in {Eļ)0, and so x" is eventually 1 for each n as i - > oo. We
 therefore have the following characterisation.

 • (i) x G Ei if and only if 3N such that xj1 = 0 for all i when n > TV,

 • (ii) x G El if and only if lim,_>oo xj1 = 1 for every n.

 Associated with the binary address of x is a sequence sn(x) taking values in
 N U {oo}, given by

 Sn{x) = sup{z : X? = 0}.

 As noted earlier, given any n there exists some i such that x" = 0, so sn(x) > 1.
 We also note at this stage that the left density at x equals the right density
 at 1 - x by symmetry, and that the relationship between the binary addresses
 of x and 1 - x is given by

 0 if x^ = 0 for all j, otherwise
 (1 - x)? = < (xj1 -j- 1) mod 2 if i < Sn (x)

 if if i > Sn{x) .

 A consequence of this is that sn(x) = sn(l - x) always. For example, if x = |
 then

 xn _ Í 0 if » = 1
 Ì 1 otherwise.
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 Applying the rule above to 1 - x we see that (1 - x)* = x", as it should in
 this case since the binary address of ^ is unique.

 It will transpire that the asymptotic behaviour of the sequence sn(x) is
 crucial to the density of ¿¡a at x.

 We now establish the relationship between x and its binary address x".
 Taking x° = 0 as before we see that

 xn - in_1 = ßn(x) (1 - orB) ¿ + 3a„ ¿ J-

 L t = l 1 = 1

 where ßn(x) is the length of the interval ^if1) which contains x. Thus
 /?i(x) = 1 and ßn{z) satisfies

 ßn + '{*) =

 So of course if sn(x) = oo then ßm(x) = 0 for all m > n. Summing over n
 gives

 00 o / ' r 00 n 00 Til

 eï+,P"+i»2:Ï
 n = 1 ť=l » = 1

 of which the second term represents the measure of open intervals in copies of

 Kn which are ultimately filled with copies of £,"+1 of measure 2»-m+2- Thus
 the measure of E' in the interval [0, x] is

 n = l L t'=l i'=l J

 = fM[ víl + 3VÍL" 2-~Ś 2n + 2 2' + " 4'
 n=l x=l ť= 1

 2.5 Metric Density of Our Ubiquitous Set

 It is an easy consequence of Lemma 2.1, and the method of construction of E' ,
 that every point of E± is a point of metric density of E' . These are precisely
 those points for which sn(x) is eventually infinite.

 Indeed the asymptotic behaviour of sn(x) is critical to the density be-
 haviour at x, as the following lemma shows.

 Lemma 2.2 If x £ (0,1) is a point of right metric density of E' (E{) then
 lim„_>oo sn(x) - n = oo (-oo).
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 Proof. For any y € ( x , 1), with the binary addresses of x, y given by x", y",
 we have

 X(Eļ n [ar,y]) _ 1
 y - x 1 + R

 where R is given by

 E~=i ^[ßn(y)(12Zi ff/*') - Ã»(*)(E<ai «?/*)]
 £~i *&'ß»(v) E."i y?( l/2ť + 3/4») - /?„(*) YZi + 3/4*)] '

 In particular we consider a sequence ym - > x+ given by

 1 if n = m and i = sm(x)
 (í/m)? = 0 if ft - m and i = sm(x) + 1

 x" otherwise.

 So ym is a number whose binary representation is identical to that of x except
 in two places, so sn(t/m) = sn(x) except when n = m , in which case sn(ym) =
 sn (x) + 1. We conclude that ßn{ym) = ßn{x) for n < m and ßn(ym) = 'ßn{x)
 for n > 77i. Calculating R at such points we have

 92^T2 (ßm(x)/4Sm(-x)+1) + A

 (2-(-)+i + 3)35ij7(Ä„(«)/4'~(-)+1) + B ■
 where

 A = Ž 92r^/?«(*)(E*?/4i)> and
 n=m+l i = l

 ß= E 2^^(*)(Žx?(1/2<+3/4<))
 n=m + l » = 1

 Now we do some estimating, firstly for the summation in the numerator.

 00 n on 00 _.n 00

 E E w*)
 n=m+l í=l n=m-fl

 < 6/?m+i(x)

 <

 - 2m + 2 4,">(x)+1

 since ßn+i(x) < 'ßn{x) and ßm+i(x) = (2amßm(x))/45m(x). We therefore
 overestimate R by taking the summation in the denominator to be zero, and
 using our overestimate of the numerator, to get

 ^ 9.2m + 48
 2'«(*)+* + 3'



 Regularity of Locally Lipschitz Functions 797

 Similarly overestimating the summation in the denominator of R gives

 Ž 5^2«.(«)(Ž*f(? + ý»S £ s/M«)
 n=m+l i=l n=m+l

 < 6ßm+i ( X )

 - 2m + 2

 as before. We now underestimate R by taking the summation in the numerator
 to be zero, and using our overestimate for the denominator. Thus

 - (2*m(*)+i + 3) + 48'

 Now for X to be a point of right density of E' we need R - ► 0 as m -ł oo.
 From our underestimate of R this requires sm(x) - m - ► oo. Similarly for x
 to be a point of right density of El we need R - ¥ oo as m - y oo. From our
 overestimate of R this requires sm(ar) - m - oo. □

 Theorem 2.1 The metric boundary of E' in (0,1) is empty.

 PROOF. If x £ mbdry E' then x is a point of right density of either E' or E' ,
 and a point of left density of the other. Suppose x is a point of right density of
 E'y then 5n(a:) - n -> oo by Lemma 2.2. Also z is a point of left density of E{ ,
 so (1 - x) is a point of right density of E'i and sn(l - x) - n -¥ - oo. However
 sn(x) = s„(l - x), so we have a contradiction. A similar contradiction arises
 if we suppose x is a point of left density of Ei . □

 Corollary 2.1 The locally Lipschitz function / : ( 0,1) ->R given by

 /(*) = / XSl (*)<**(*)
 Jo

 is nowhere regular.

 Proof. No differentiate point of / is regular. The regular, non-differentiable
 points of / lie in the metric boundary of E i which is empty. □

 The whole question of allowable metric density behaviour of measurable
 sets seems to be one which is not well understood. As an example of an open
 question in this area, must a measurable set on the line (neither full nor zero
 measure) have at least one point of metric density a half? Of course a point
 on the metric boundary of a set has metric density a half, but the construction
 above shows that a set may have no metric boundary.
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