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 MEASURABILITY, QUASICONTINUITY
 AND CLIQUISHNESS OF FUNCTIONS OF

 TWO VARIABLES

 Abstract

 Several properties (measurability, quasicontinuity and cliquishness)
 of functions of two variables having special sections are proved.

 Denote by M the set of all reals and by M 2 the product space MxE. Let
 (X, r) be a topological space with a topology r. A function / : X M is said
 to be r quasicontinuous (r cliquish ) at a point x G X if for every set U G t
 containing x and for every rj > 0 there is a nonempty set V G t such that
 V C U and 'f(t) - f(x)' < tj for every t G V (oscy / < 77) [12] .

 A point x G M is said to be a density point of a measurable (in the sense
 of Lebesgue) set A C M if lim/^o /¿([z - A, x + h]C'A)/2h = 1 where.// denotes
 Lebesgue measure.

 The family

 Td = {A C is measurable and every point x £ A is a density point of A}

 is a topology called the density topology [1].
 Analogously, the family rae = {A E r¿;/i(A ' int A) = 0}, where int de-

 notes the Euclidean interior of A , is a topology called a.e. topology (O'Malley
 [9])-

 For a given topological space ( X , r) we define the following condition:

 (1) there is a countable subfamily <Ê C r such that for every nonempty set
 U Et there is a set. V G $ such that V C U and V 0.

 Observe that the topology rae satisfies condition (1).
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 Theorem 0.1 Assume that a topological space (X,tx) satisfies condition (1)
 and a topological space (Y, ry) is a Baire space. If a function f : X x Y - > M
 is such that all sections

 Mv) = fi*,v),x€X,v€Y

 and

 fy(u) = f(u,y),u€ X,y€Y

 are ry and respectively rx quasicontinuous, then f is (rx x Ty) quasicontin-
 uous.

 Proof. Fix a positive real 77, a point (x, y) £ X x Y and a set W £ tx x ry
 containing the point (x, y). Let U £ rx and V £ ry be such that x £ U,y £ V
 and U x V C W. Let /i . be a subfamily of nonempty sets of tx such
 that for every nonempty set Z 6 tx there is a set In C Z. Since all sections
 fv, v G V, are rx quasicontinuous, for each v G V there is an index n(v) such
 that /n(„) C U and for every u G In(v) have |/(x, v) - /(u, v)| < 77/4.

 Similarly, by the ry quasicontinuity of the section fx at a point y there is
 a nonempty set L C V such that L £ ry and for all v G L we have

 I f(x,v) - f(x,y) I < 77/4.

 But the set L is of the second category, so there is an index n' such that
 the set A = {v G L;n(v) = ni} is of the second category. Let a set M C L
 be such that 0^MGtv,MCcM, where cM denotes the closure (in Ty) of
 the set A. Then the set K = Ini x M G rx x ry is nonempty and K C W.
 For each (u, v) £ Ini x A we have

 |/(u,t>) - f(x,y)' < 'f(u,v)-f(x,v)' + 'f(x,v)-f(x,y)' < t)/4 + t}/4= t}/ 2.

 Let (ť, iu) £ K. Since the section /* is ry quasicontinuous at tu and since the
 set AC'M is dense in M, there is a point z £ ADM such that |/(ť, z)- /(ť, it;)| <
 77/4. Consequently,

 |/(ť,u;) - f(x,y) I < |/(ť,u>) - /(ť,z)| + |/(ť,z) + f{x,y)' < t}/4+t¡/2 < i).

 □

 Remark 0.1 The method of the proof of Theorem 0.1 is known and used e.g.
 in [11],

 Theorem 0.2 Let the spaces ( X , rx) and (Y, ry) be the same as in Theorem
 0.1. If all sections fx of a function f : X x Y -łR are ry quasicontinuous
 and if all sections fy are rx cliquish , then f is (rx x ry) cliquish.



 746 Zbigniew Grande

 Proof. Adopt the notation from the proof of Theorem 0.1. Since all sections
 fv,v G V, are tx cliquish, for each v G V there is an index k(v) such that
 h(v) C U and ose jfc(v) fv < 77/8. There is an index ki such that the set B =
 {t; € L'k(y ) = Ari} is of the second category. Let J3 C cl5 be a nonempty
 set belonging to ry and let (u, v) G h1 x (D fi B) be a fixed point. Since the
 section fu is ry quasicontinuous at v, there is a nonempty set T G Ty such
 that T C D and for each point w £T we have |/(u, w) - /(tz, v)| < rj/A. Let
 N = /fc1 X T. Then N C W is a nonempty set belonging to x 7y. For each
 point (ť, w) G hi x (TOB) we have

 l/(*, w) - /K v)| < |/(ť, w) - /(ii, u;) I + |/(ti, u;) - /(ti, v) I

 < + 77/4 < 377/8.

 If a point (s, z) G N, then there is a point w G T D B such that |/(s,u>) -
 /(5,z)| < 77/8 and consequently,

 I /(*, z) - /(tx, v)| < |/(5, 2) - /(s, w)| -h |/(5, w) - /(ti, v)|

 < 77/8 H- 377/8 = 77/2.

 This proves that ose w / < 77.

 Since (M, rae) is a Baire space satisfying condition (1), we have the following
 consequence.

 Corollary 0.1 If all sections fx of a function / : M2 - > M are rae quasicon-
 tinuous and all sections fy are rae quasicontinuous (rae cliquish ), then f is
 ( Tae x rae) quasicontinuous ((rae x rae) cliquish).

 Remark 0.2 Observe that the topology rae does not satisfy the second count-
 ability axiom in a nonempty set. U G rae. So, Corollary 0.1 is not a direct
 consequence of Theorem 3 in [3] and Theorem Ą.1.2 in [12].

 Let re denote the Euclidean topology in IR. For a topological space ( X , r)
 let

 Q(r) = {/ : X - ► IR; / is r quasicontinuous}

 and

 P{r) = {/ : X - > IR; / is r cliquish}.

 We have ([4]) Q(rae) C Q(re) C P{re) = -P(fae), where all inclusions are
 proper.
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 Lemma 0.1 Let C C M be a nonempty nowhere dense perfect set. If a func-
 tion f : M - > [0, 1] is such that for every component I of the set M 'C the
 restricted function f'cll is re continuous and /(cl/) = [0,1], then f is rae
 quasicontinuous at each point x G C which is not a density point of M ' C.

 Proof. Let x G C be a point which is not a density point of IR ' C, and let
 U G rae be a set containing x. Then fi(C C I U) > 0 and there is a component
 I of M ' C which is contained in intt/. Fix a positive rj. Since f(x) G [0, 1]
 and /(cl/) = [0, 1], there is an open interval J C I such that f(J) C (/(®) -
 7 J, /(x) + rj). But J G Te C Tae. □

 Corollary 0.2 There is a rae quasicontinuous function / : R -> [0, 1] which
 is not measurable (in the sense of Lebesgue).

 Proof. Let C C (0, 1) be a Cantor set of positive measure which does not
 contain density points of the set, M ' C and let

 B = {x G C; x is a density point of C}.

 If A C B is a nonmeasurable set, then each function / : M - > [0, 1] such that
 f(x) = 1 for x G A, f(x) = 0 for x G C ' A and for every component I of the
 set M 'C, the restricted function f' cl I is continuous and /(cl I) = [0, 1], is rac
 quasicontinuous, by Lemma 0.1. Evidently, / is not measurable. □

 It is known that there are nonmeasurable functions / : M 2 - ï [0, 1] with
 measurable sections fx and continuous sections fy ([5]). Moreover, if all
 sections fx of a function / : M 2 -» M are measurable and all its sections fy are
 rae continuous, then / is measurable ([5]).

 Theorem 0.3 Assume Martin's Axiom (MA). There is a nonmeasurable
 function f : M2 - y [0, 1] such that all its sections fx are quasicontinu-
 ous (and hence measurable) and all its sections fy are measurable and rae
 quasicontinuous.

 Proof. There is a nonmeasurable function g : M2 - > [0, 1] such that all its
 sections fx and fy are t¿ quasicontinuous ([8]). There is also a Cantor set
 C C lof positive measure such that the restricted function g'(C x M) is not
 measurable. Let 5 = {xGC;x is a density point of C} and let h : M - ¥ [0, 1]
 be a rae quasicontinuous function such that for every component I of M ' C
 the restricted function h'c'I is re continuous and h(c'I) = [0, 1]. Set

 ti ' ifxeB
 * X'lJ ' ifx€R'B.
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 Evidently, / is not measurable and all its sections fx are quasicontinuous.
 Since all functions quasicontinuous are measurable ([8]), all sections fy are
 measurable, and by Lemma 0.1, they are rae quasicontinuous. □

 Remark 0.3 Observe that from its proof the function of Theorem 0.3 is ( rae x
 Td) quasicontinuous.

 Now we introduce the following definitions:
 A function / : M - ï M is said to be strongly quasicontinuous (strongly

 cliquish) at a point x G M if for every rj > 0 and for every set U £ Td such that
 x £ U there is an open interval I such that I O U ^ 0 and for every t £ I H U
 we have |/(ť) - /(x)| < 77 (resp. /osc/nc/ f < 'n).

 Remark 0.4 The definition of the strong Td cliquishness of a function f :
 M - > M is equivalent to property ( G ) introduced in [5].

 Remark 0.5 A function f : M - » R is strongly Td quasicontinuous (strongly
 Td cliquish ) at a point x £ M // and only if for every r¡ > 0 and for every F0
 set U £ Td containing x there is an open interval I such that I fi U ^ 0 and
 for each t £ I C' U we have | f(t) - f(x) ' < rj (resp. oscmu f < v)-

 Proof. Indeed if U E Td is a set containing x, then there is an Fa set W C U
 belonging to such that cl({(ź, f(t))' t G W }) = cl({(ť, f(t))'t G U}). If I is
 an open interval such that I fi W 0 and 'f(t) - f(x) ' < r)) 2 for t £ I C' W ,
 then I f(t) - f(x) I < 77/2 < 77 for t G I fi U. Similarly, if oscjn'v f < V, then
 ose mu f < V- □

 Remark 0.6 Evidently every Tae continuous function f : M - y M is strongly
 Td quasicontinuous. However there is a rae quasicontinuous function f : M - >•
 M which is not strongly Td quasicontinuous and which is such that for each
 countable union A of perfect sets the restricted function f'A has a continuity
 point. (Such functions were introduced by Peek in [13].)

 Proof. For example, let C C (0, 1) be a Cantor set of positive measure
 and let {/„} be a sequence of all components of the set (0, 1) ' C. For each
 n = 1,2, .. . we find a closed interval Jn having the same center as In and
 such that ¡¿(Jn) < fi(In)/n and a closed interval Kn C int Jn. Then every
 function / : M - > M such that for every n = 1,2,..., the restricted function
 /I cl In is re continuous, f{Kn) = {1}, f{Jn) = [0, 1] and such that f(x) = 0
 for x G I ' Un > lint Jn satisfies all required conditions. Indeed if x G C is a
 density point of C and D C C is a set belonging to and containing x, then
 E = £>UUn>i int Kn is a r^-neighborhood of x and for each open interval I
 such that EOI ^ 0 there is an index n' with inť A'ni O I ^ 0. Since f(t) = 1 for
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 t G Kni and since /(x) = 0, the function / is not strongly quasicontinuous at
 x. Obviously / is pointwise discontinuous on every countable union of perfect
 sets and, by Lemma 0.1, / is rae quasicontinuous. □

 Remark 0.7 Since all strongly quasicontinuous function are quasicontin-
 uous and almost everywhere continuous [6], every function / : M2 - )• I R having
 all sections fx strongly t<1 quasicontinuous and all sections fy measurable is
 measurable [10].

 The functions gt : M - > R of a family {<7t}t€S> where 5 is a set of indexes,
 is said to be strongly upper t¿ equiquasicontinuous at a point x if for every
 Tj > 0 and for every set U G containing x there is' an open interval I such
 that I fi U 0 and ft(u) - ft(x) < rj for every u G I H U and t G S.

 Theorem 0.4 Let f : M 2 - y M be a function such that all sections fx are
 strongly upper r¿ equiquasicontinuous and all sections fy are measurable. Then
 f is measurable.

 Proof. By Lemma 2 in [2] it suffices to prove that for every 77 > 0 and for
 every measurable set A C M 2 of positive measure there is a measurable set
 B C A of positive measure such that oscb f < 7]. Without loss of generality we
 may suppose that / is bounded below, since if all functions max(a, /), a Gl,
 are measurable, then / is also measurable and all functions ma x(a,/) satisfy
 the hypothesis of our Theorem.

 Fix a real 77 > 0 and a measurable set, A C M 2 of positive measure. Let

 a = essine / = sup{ inf /; /22 (C) = 0},
 A'C

 where //2 denotes Lebesgue measure in M2. Let A' = { (ar, y) G A' /(x, y) > a).
 There is a measurable set D C A' such that //2(^1 ' D) = 0 and if (x, y) G D ,
 then the section Dx = {v G M;(x,v) G D} is measurable and y is a density
 point of Dx ([14], pages 130-131). Since H2 {A ' D) = 0, we have ess inf d f =
 a. Let E = {(x,y) G D;/(x,y) < a + 77/ 4}. Then E C D is of positive
 outer measure. From the strong upper t¿ equiquasicontinuity of all sections
 fx, x G M, it follows that for every (x, y) G E there is an open interval /(x, y)
 with rational endpoints such that /(x, y) H Dx ^0 and /(x, v) - /(x, y) < 77/4
 for each v G /(x, y). Since the set E is of positive outer measure and the set of
 all intervals with rational endpoints is countable, there is an open interval I'
 such that the set F = {(x,y) G I?;/(x,t/) = /1} is of positive outer measure,
 and consequently, its projection pr XF = {x G M;By(x,y) G F} is also of
 positive outer measure. Let G D pix F be a measurable cover of prx F (i.e.,
 a measurable set such that if C C G ' prx F is measurable, then /¿(C) = 0).
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 Put H = (G X Ii) C' D and observe that H is measurable. Since all sections
 Hx for x G prr F are of positive measure, the set H is of positive measure.
 Fix t/1 G I' such that the section Hyi = {x;(x,t/i) G H} is measurable of
 positive measure. The section x - » /(x,t/i),x G M, is measurable. So there
 is a set U G such that U C iïyi and ose u fVl < rç/4. From the strong
 upper rj equiquasicontinuity of the sections fx it follows that there is an open
 interval /2 C I' such that for each x G Hyi the set /2 fl Dx is nonempty and
 /(x, v) - /(x, t/i) < 77/4 for every v G h H -D*. Put ¿? = (iřyi x /2) rï .D. Since
 for each x € HVl the section Bx is of positive measure, the set B is of positive
 measure. Fix a point xi G Hyi fl pvx F. For every (x, y) G B we have

 a < /(«, 2/) < /(*, 2/1 ) + *7/4 < /(«1 , yi) + î?/4 + 77/4

 < a -f 77/4 + 77/4 + 77/4 < a + 377/4.

 So, oscb / < 77. □

 Theorem 0.5 Let f : M2 - » JR. If all sections fXlx G M, are strongly upper
 t¿ equiquasicontinuous and if all sections fy ì y G M, /iat;e the Baire property ,
 then f has the Baire property.

 Proof. The proof is similar as the proof of the previous theorem. As before
 we can suppose that / is bounded below. By Theorem 1 in [7] it suffices
 to prove that for every positive 77 and for every set A C M 2 with the Baire
 property and of the second category there is a set B C A with the Baire
 property and of the second category such that ose# / < 77. Let 77 > 0 be a
 real number and let A C M 2 be a set of the second category having the Baire
 property. Let Ai be a nonempty open set such that A' ' A is of the first
 category. There is a set B' C M of the first category such that if x is not in
 Bi , then the section («Ai ' A)x is of the first category. Let

 a = ( B ) essinf^j / = sup{ inf /; C is of the first category}
 ¿i'C

 and let A 2 = {(x,y) G Ai 'f(x,y) > a}. Observe that (£) esssupA2 / = a. Let
 D = {(x, y) G A2'f{x, y) < a + 77/4}. Evidently D is of the second category.
 By the strong upper equiquasicontinuity of all sections fx , x G M , for each
 point (x, y) G D , there is an open interval /(x, y) with rational endpoints such
 that /(x, y) O Dx ^ 0 and /(x, v) < a + 77/4 for each point v € Dx Ci /(x, y).
 There is an open interval I' such that E = {(x, y) G D' /(x, y) = /1} is of the
 second category, and consequently, its projection prr E is also of the second
 category. Let F D prx E be a Baire cover of prr E (i.e., a set with the Baire
 property such that if a set C C F ' prx E has the Baire property, then C is
 of the first category). Put G = (F x li) D D and let yi eh be a point such
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 that the section GVl has the Baire property and is of the second category.
 By the Baire property of fyi , there is a set H C Gyi of the second category
 with the Baire property such that ose h fyi < *?/4. Let /2 C h be an open
 interval such that /2 H Dx ^ 0 and /(x, v) < /(x, 2/1) + 77/4 for each x £ H and
 t; £ /2 H Then the set B = (H x I2) D D is of the second category, has the
 Baire property and ose# f < r¡. Since B C Ai C -A, the proof is completed. □

 Remark 0.8 Observe that if a family of functions ft : M - ► G S, is sue/i
 /or eacA i 6ß and /or eac/i rj > 0 ¿Aere ¿5 an open set U such that x

 is not a density point of M ' U and if for each t £ S and for each u E U
 we have ft(u) - /t(x) < 77, then the functions ft,t £ S, are strongly upper r¿
 equiquasicontinuous.

 Remark 0.9 Assume (MA). There is a function / : R2 - » R having all
 sections fx r¿ continuous and Tae quasicontinuous and all sections fy mea-
 surable such that for some re continuous function g : M - > R Carathéodory's
 superposition h{x) = f(xìg(x))ì i£l,is not measurable.

 Proof. Let C, D C (0, 1) be Cantor sets such that C C Dy /i(C) = 0 and
 every point x £ C is a density point of the set D. There is a rc continuous
 function g : M M such that g (D) C C and g(x) ^ ¿7(11) for u ^ x. Let
 A C D be a nonmeasurable set, and let x0, . . . , xa, . . . , a < w, be a transfinite
 sequence of all reals such that for each a < uj the set Aa = { Xß'ß < a}
 is of measure zero. For each x = xa £ A there is a t¿ continuous function
 kx : R -¥ [0,1] such that kx(y) = 0 if y £ (M ' D) U Aa> y ^ g{x) and
 kx(g(x)) > 0 ([1]). Similarly if x = xa £ M ' A, then there is a continuous
 function kx : M - > [0, 1] such that kx(y) = 0 if y € (M ' D) U Aa U {<7(x)}.
 Moreover let <j> be a function having the same properties as the function /
 (constructed for the set D) from the proof of Remark 0.6. Let /(x, y) = kx(y)
 if y £ D and f(x,y) = <¡>{y) if y is not in D. By Lemma 0.1 all sections fx
 are rae quasicontinuous and r¿ continuous. All sections fy ,y £ D , are equal
 to zero almost everywhere, and hence they are measurable. If y £ M' D, then
 the section fy is constant. Moreover, {x;/i(x) = f{xig(x)) > 0} = A and A
 is not measurable. So h is nonmeasurable. □

 Remark 0.10 There is a function f : M2 - >• [0, 1] having all sections fx and
 fy strongly t¿ quasicontinuous such that the function h(x) = /(x,x),x £ M,
 is nonmeasurable. For example, if A C (0, 1) is a nonmeasurable set , then the
 function /(x, y) = 1 for y > f(x) or y = f(x) whenever x £ A and /(x, y) = 0
 otherwise , satisfies the above condition.
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