Zbigniew Grande, Mathematical Institute, Pedagogical University, Plac Słowiański 9, 65-069 Zielona Góra, Poland

MEASURABILITY, QUASICONTINUITY AND CLIQUISHNESS OF FUNCTIONS OF TWO VARIABLES

Abstract

Several properties (measurability, quasicontinuity and cliquishness) of functions of two variables having special sections are proved.

Denote by \mathbb{R} the set of all reals and by \mathbb{R}^2 the product space $\mathbb{R} \times \mathbb{R}$. Let (X, τ) be a topological space with a topology τ . A function $f: X \to \mathbb{R}$ is said to be τ quasicontinuous (τ cliquish) at a point $x \in X$ if for every set $U \in \tau$ containing x and for every $\eta > 0$ there is a nonempty set $V \in \tau$ such that $V \subset U$ and $|f(t) - f(x)| < \eta$ for every $t \in V$ ($\operatorname{osc}_V f < \eta$) [12].

A point $x \in \mathbb{R}$ is said to be a density point of a measurable (in the sense of Lebesgue) set $A \subset \mathbb{R}$ if $\lim_{h\to 0} \mu([x-h, x+h] \cap A)/2h = 1$ where μ denotes Lebesgue measure.

The family

 $\tau_d = \{A \subset \mathbb{R}; A \text{ is measurable and every point } x \in A \text{ is a density point of } A\}$

is a topology called the density topology [1].

Analogously, the family $\tau_{ae} = \{A \in \tau_d; \mu(A \setminus \text{int } A) = 0\}$, where int A denotes the Euclidean interior of A, is a topology called *a.e.* topology (O'Malley [9]).

For a given topological space (X, τ) we define the following condition:

(1) there is a countable subfamily $\Phi \subset \tau$ such that for every nonempty set $U \in \tau$ there is a set $V \in \Phi$ such that $V \subset U$ and $V \neq \emptyset$.

Observe that the topology τ_{ae} satisfies condition (1).

Key Words: strong quasicontinuity, measurability, density topologies, cliquishness, sections Mathematical Reviews subject classification: 26B05, 26B99, 28A20, 28A35, 54C10,

⁵⁴C30. Received by the editors April 11, 1994

^{*}Supported by KBN grant (1992-94) No. 2 1144 91 01

Theorem 0.1 Assume that a topological space (X, τ_X) satisfies condition (1) and a topological space (Y, τ_Y) is a Baire space. If a function $f : X \times Y \to \mathbb{R}$ is such that all sections

$$f_x(v) = f(x, v), x \in X, v \in Y$$

and

$$f^{\mathbf{y}}(u) = f(u, y), u \in X, y \in Y$$

are τ_Y and respectively τ_X quasicontinuous, then f is $(\tau_X \times \tau_Y)$ quasicontinuous.

PROOF. Fix a positive real η , a point $(x, y) \in X \times Y$ and a set $W \in \tau_X \times \tau_Y$ containing the point (x, y). Let $U \in \tau_X$ and $V \in \tau_Y$ be such that $x \in U, y \in V$ and $U \times V \subset W$. Let I_1, \ldots, I_n, \ldots be a subfamily of nonempty sets of τ_X such that for every nonempty set $Z \in \tau_X$ there is a set $I_n \subset Z$. Since all sections $f^v, v \in V$, are τ_X quasicontinuous, for each $v \in V$ there is an index n(v) such that $I_{n(v)} \subset U$ and for every $u \in I_{n(v)}$ we have $|f(x, v) - f(u, v)| < \eta/4$.

Similarly, by the τ_Y quasicontinuity of the section f_x at a point y there is a nonempty set $L \subset V$ such that $L \in \tau_Y$ and for all $v \in L$ we have

$$|f(x,v)-f(x,y)|<\eta/4$$

But the set L is of the second category, so there is an index n_1 such that the set $A = \{v \in L; n(v) = n_1\}$ is of the second category. Let a set $M \subset L$ be such that $\emptyset \neq M \in \tau_Y, M \subset cl A$, where cl A denotes the closure (in τ_Y) of the set A. Then the set $K = I_{n_1} \times M \in \tau_X \times \tau_Y$ is nonempty and $K \subset W$. For each $(u, v) \in I_{n_1} \times A$ we have

$$|f(u,v) - f(x,y)| \le |f(u,v) - f(x,v)| + |f(x,v) - f(x,y)| < \eta/4 + \eta/4 = \eta/2$$

Let $(t, w) \in K$. Since the section f_t is τ_Y quasicontinuous at w and since the set $A \cap M$ is dense in M, there is a point $z \in A \cap M$ such that $|f(t, z) - f(t, w)| < \eta/4$. Consequently,

$$|f(t,w) - f(x,y)| \le |f(t,w) - f(t,z)| + |f(t,z) + f(x,y)| < \eta/4 + \eta/2 < \eta.$$

Remark 0.1 The method of the proof of Theorem 0.1 is known and used e.g. in [11].

Theorem 0.2 Let the spaces (X, τ_X) and (Y, τ_Y) be the same as in Theorem 0.1. If all sections f_x of a function $f : X \times Y \to \mathbb{R}$ are τ_Y quasicontinuous and if all sections f^y are τ_X cliquish, then f is $(\tau_X \times \tau_Y)$ cliquish.

PROOF. Adopt the notation from the proof of Theorem 0.1. Since all sections $f^v, v \in V$, are τ_X cliquish, for each $v \in V$ there is an index k(v) such that $I_{k(v)} \subset U$ and $\operatorname{osc}_{I_{k(v)}} f_v < \eta/8$. There is an index k_1 such that the set $B = \{v \in L; k(v) = k_1\}$ is of the second category. Let $D \subset \operatorname{cl} B$ be a nonempty set belonging to τ_Y and let $(u, v) \in I_{k_1} \times (D \cap B)$ be a fixed point. Since the section f_u is τ_Y quasicontinuous at v, there is a nonempty set $T \in \tau_Y$ such that $T \subset D$ and for each point $w \in T$ we have $|f(u, w) - f(u, v)| < \eta/4$. Let $N = I_{k_1} \times T$. Then $N \subset W$ is a nonempty set belonging to $\tau_X \times \tau_Y$. For each point $(t, w) \in I_{k_1} \times (T \cap B)$ we have

$$|f(t,w) - f(u,v)| \le |f(t,w) - f(u,w)| + |f(u,w) - f(u,v)|$$

< $\eta/8 + \eta/4 < 3\eta/8.$

If a point $(s, z) \in N$, then there is a point $w \in T \cap B$ such that $|f(s, w) - f(s, z)| < \eta/8$ and consequently,

$$\begin{aligned} |f(s,z) - f(u,v)| &\leq |f(s,z) - f(s,w)| + |f(s,w) - f(u,v)| \\ &< \eta/8 + 3\eta/8 = \eta/2. \end{aligned}$$

This proves that $\operatorname{osc}_N f \leq \eta$.

Since (\mathbb{R}, τ_{ae}) is a Baire space satisfying condition (1), we have the following consequence.

Corollary 0.1 If all sections f_x of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are τ_{ae} quasicontinuous and all sections f^y are τ_{ae} quasicontinuous (τ_{ae} cliquish), then f is ($\tau_{ae} \times \tau_{ae}$) quasicontinuous (($\tau_{ae} \times \tau_{ae}$) cliquish).

Remark 0.2 Observe that the topology τ_{ae} does not satisfy the second countability axiom in a nonempty set $U \in \tau_{ae}$. So, Corollary 0.1 is not a direct consequence of Theorem 3 in [3] and Theorem 4.1.2 in [12].

Let τ_e denote the Euclidean topology in \mathbb{R} . For a topological space (X, τ) let

$$Q(\tau) = \{f : X \to \mathbb{R}; f \text{ is } \tau \text{ quasicontinuous} \}$$

and

$$P(\tau) = \{ f : X \to \mathbb{R}; f \text{ is } \tau \text{ cliquish} \}.$$

We have ([4]) $Q(\tau_{ae}) \subset Q(\tau_e) \subset P(\tau_e) = P(\tau_{ae})$, where all inclusions are proper.

Lemma 0.1 Let $C \subset \mathbb{R}$ be a nonempty nowhere dense perfect set. If a function $f : \mathbb{R} \to [0,1]$ is such that for every component I of the set $\mathbb{R} \setminus C$ the restricted function f|c|I is τ_e continuous and f(c|I) = [0,1], then f is τ_{ae} quasicontinuous at each point $x \in C$ which is not a density point of $\mathbb{R} \setminus C$.

PROOF. Let $x \in C$ be a point which is not a density point of $\mathbb{R} \setminus C$, and let $U \in \tau_{ae}$ be a set containing x. Then $\mu(C \cap U) > 0$ and there is a component I of $\mathbb{R} \setminus C$ which is contained in int U. Fix a positive η . Since $f(x) \in [0,1]$ and f(c|I) = [0,1], there is an open interval $J \subset I$ such that $f(J) \subset (f(x) - \eta, f(x) + \eta)$. But $J \in \tau_e \subset \tau_{ae}$.

Corollary 0.2 There is a τ_{ae} quasicontinuous function $f : \mathbb{R} \to [0, 1]$ which is not measurable (in the sense of Lebesgue).

PROOF. Let $C \subset (0,1)$ be a Cantor set of positive measure which does not contain density points of the set $\mathbb{R} \setminus C$ and let

$$B = \{x \in C; x \text{ is a density point of } C\}.$$

If $A \subset B$ is a nonmeasurable set, then each function $f : \mathbb{R} \to [0, 1]$ such that f(x) = 1 for $x \in A$, f(x) = 0 for $x \in C \setminus A$ and for every component I of the set $\mathbb{R} \setminus C$, the restricted function f | cl I is continuous and f(cl I) = [0, 1], is τ_{ae} quasicontinuous, by Lemma 0.1. Evidently, f is not measurable.

It is known that there are nonmeasurable functions $f : \mathbb{R}^2 \to [0, 1]$ with measurable sections f_x and τ_d continuous sections f^y ([5]). Moreover, if all sections f_x of a function $f : \mathbb{R}^2 \to \mathbb{R}$ are measurable and all its sections f^y are τ_{ae} continuous, then f is measurable ([5]).

Theorem 0.3 Assume Martin's Axiom (MA). There is a nonmeasurable function $f : \mathbb{R}^2 \to [0,1]$ such that all its sections f_x are τ_d quasicontinuous (and hence measurable) and all its sections f^y are measurable and τ_{ae} quasicontinuous.

PROOF. There is a nonmeasurable function $g : \mathbb{R}^2 \to [0, 1]$ such that all its sections f_x and f^y are τ_d quasicontinuous ([8]). There is also a Cantor set $C \subset \mathbb{R}$ of positive measure such that the restricted function $g|(C \times \mathbb{R})$ is not measurable. Let $B = \{x \in C; x \text{ is a density point of } C\}$ and let $h : \mathbb{R} \to [0, 1]$ be a τ_{ae} quasicontinuous function such that for every component I of $\mathbb{R} \setminus C$ the restricted function $h| \operatorname{cl} I$ is τ_e continuous and $h(\operatorname{cl} I) = [0, 1]$. Set

$$f(x,y) = \begin{cases} g(x,y) & \text{if } x \in B \\ h(x) & \text{if } x \in \mathbb{R} \setminus B. \end{cases}$$

Evidently, f is not measurable and all its sections f_x are τ_d quasicontinuous. Since all functions τ_d quasicontinuous are measurable ([8]), all sections f^y are measurable, and by Lemma 0.1, they are τ_{ae} quasicontinuous.

Remark 0.3 Observe that from its proof the function of Theorem 0.3 is $(\tau_{ae} \times \tau_d)$ quasicontinuous.

Now we introduce the following definitions:

A function $f : \mathbb{R} \to \mathbb{R}$ is said to be strongly τ_d quasicontinuous (strongly τ_d cliquish) at a point $x \in \mathbb{R}$ if for every $\eta > 0$ and for every set $U \in \tau_d$ such that $x \in U$ there is an open interval I such that $I \cap U \neq \emptyset$ and for every $t \in I \cap U$ we have $|f(t) - f(x)| < \eta$ (resp. $I \operatorname{osc}_{I \cap U} f \leq \eta$).

Remark 0.4 The definition of the strong τ_d cliquishness of a function $f : \mathbb{R} \to \mathbb{R}$ is equivalent to property (G) introduced in [5].

Remark 0.5 A function $f : \mathbb{R} \to \mathbb{R}$ is strongly τ_d quasicontinuous (strongly τ_d cliquish) at a point $x \in \mathbb{R}$ if and only if for every $\eta > 0$ and for every F_{σ} set $U \in \tau_d$ containing x there is an open interval I such that $I \cap U \neq \emptyset$ and for each $t \in I \cap U$ we have $|f(t) - f(x)| < \eta$ (resp. $\operatorname{osc}_{I \cap U} f \leq \eta$).

PROOF. Indeed if $U \in \tau_d$ is a set containing x, then there is an F_{σ} set $W \subset U$ belonging to τ_d such that $cl(\{(t, f(t)); t \in W\}) = cl(\{(t, f(t)); t \in U\})$. If I is an open interval such that $I \cap W \neq \emptyset$ and $|f(t) - f(x)| < \eta/2$ for $t \in I \cap W$, then $|f(t) - f(x)| \le \eta/2 < \eta$ for $t \in I \cap U$. Similarly, if $osc_{I \cap W} f \le \eta$, then $osc_{I \cap U} f \le \eta$.

Remark 0.6 Evidently every τ_{ae} continuous function $f : \mathbb{R} \to \mathbb{R}$ is strongly τ_d quasicontinuous. However there is a τ_{ae} quasicontinuous function $f : \mathbb{R} \to \mathbb{R}$ which is not strongly τ_d quasicontinuous and which is such that for each countable union A of perfect sets the restricted function f|A has a continuity point. (Such functions were introduced by Peek in [13].)

PROOF. For example, let $C \subset (0,1)$ be a Cantor set of positive measure and let $\{I_n\}$ be a sequence of all components of the set $(0,1) \setminus C$. For each $n = 1, 2, \ldots$ we find a closed interval J_n having the same center as I_n and such that $\mu(J_n) < \mu(I_n)/n$ and a closed interval $K_n \subset \operatorname{int} J_n$. Then every function $f : \mathbb{R} \to \mathbb{R}$ such that for every $n = 1, 2, \ldots$, the restricted function $f|\operatorname{cl} I_n$ is τ_e continuous, $f(K_n) = \{1\}, f(J_n) = [0,1]$ and such that f(x) = 0for $x \in \mathbb{R} \setminus \bigcup_{n \ge 1} \operatorname{int} J_n$ satisfies all required conditions. Indeed if $x \in C$ is a density point of C and $D \subset C$ is a set belonging to τ_d and containing x, then $E = D \cup \bigcup_{n \ge 1} \operatorname{int} K_n$ is a τ_d -neighborhood of x and for each open interval Isuch that $E \cap I \neq \emptyset$ there is an index n_1 with $\operatorname{int} K_{n_1} \cap I \neq \emptyset$. Since f(t) = 1 for $t \in K_{n_1}$ and since f(x) = 0, the function f is not strongly τ_d quasicontinuous at x. Obviously f is pointwise discontinuous on every countable union of perfect sets and, by Lemma 0.1, f is τ_{ae} quasicontinuous.

Remark 0.7 Since all strongly τ_d quasicontinuous function are quasicontinuous and almost everywhere continuous [6], every function $f : \mathbb{R}^2 \to \mathbb{R}$ having all sections f_x strongly τ_d quasicontinuous and all sections f^y measurable is measurable [10].

The functions $g_t : \mathbb{R} \to \mathbb{R}$ of a family $\{g_t\}_{t \in S}$, where S is a set of indexes, is said to be strongly upper τ_d equiquasicontinuous at a point x if for every $\eta > 0$ and for every set $U \in \tau_d$ containing x there is an open interval I such that $I \cap U \neq \emptyset$ and $f_t(u) - f_t(x) < \eta$ for every $u \in I \cap U$ and $t \in S$.

Theorem 0.4 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that all sections f_x are strongly upper τ_d equiquasicontinuous and all sections f^y are measurable. Then f is measurable.

PROOF. By Lemma 2 in [2] it suffices to prove that for every $\eta > 0$ and for every measurable set $A \subset \mathbb{R}^2$ of positive measure there is a measurable set $B \subset A$ of positive measure such that $\operatorname{osc}_B f \leq \eta$. Without loss of generality we may suppose that f is bounded below, since if all functions $\max(a, f), a \in \mathbb{R}$, are measurable, then f is also measurable and all functions $\max(a, f)$ satisfy the hypothesis of our Theorem.

Fix a real $\eta > 0$ and a measurable set $A \subset \mathbb{R}^2$ of positive measure. Let

$$a = \operatorname{ess\,inf}_{A} f \doteq \sup \{ \inf_{A \setminus C} f; \mu_2(C) = 0 \},$$

where μ_2 denotes Lebesgue measure in \mathbb{R}^2 . Let $A_1 = \{(x, y) \in A; f(x, y) \geq a\}$. There is a measurable set $D \subset A_1$ such that $\mu_2(A_1 \setminus D) = 0$ and if $(x, y) \in D$, then the section $D_x = \{v \in \mathbb{R}; (x, v) \in D\}$ is measurable and y is a density point of D_x ([14], pages 130-131). Since $\mu_2(A \setminus D) = 0$, we have essinf D f =a. Let $E = \{(x, y) \in D; f(x, y) < a + \eta/4\}$. Then $E \subset D$ is of positive outer measure. From the strong upper τ_d equiquasicontinuity of all sections $f_x, x \in \mathbb{R}$, it follows that for every $(x, y) \in E$ there is an open interval I(x, y)with rational endpoints such that $I(x, y) \cap D_x \neq \emptyset$ and $f(x, v) - f(x, y) < \eta/4$ for each $v \in I(x, y)$. Since the set E is of positive outer measure and the set of all intervals with rational endpoints is countable, there is an open interval I_1 such that the set $F = \{(x, y) \in E; I(x, y) = I_1\}$ is of positive outer measure, and consequently, its projection $\operatorname{pr}_x F = \{x \in \mathbb{R}; \exists_y(x, y) \in F\}$ is also of positive outer measure. Let $G \supset \operatorname{pr}_x F$ be a measurable cover of $\operatorname{pr}_x F$ (i.e., a measurable set such that if $C \subset G \setminus \operatorname{pr}_x F$ is measurable, then $\mu(C) = 0$).

Put $H = (G \times I_1) \cap D$ and observe that H is measurable. Since all sections H_x for $x \in \operatorname{pr}_x F$ are of positive measure, the set H is of positive measure. Fix $y_1 \in I_1$ such that the section $H^{y_1} = \{x; (x, y_1) \in H\}$ is measurable of positive measure. The section $x \to f(x, y_1), x \in \mathbb{R}$, is measurable. So there is a set $U \in \tau_d$ such that $U \subset H^{y_1}$ and $\operatorname{osc}_U f^{y_1} < \eta/4$. From the strong upper τ_d equiquasicontinuity of the sections f_x it follows that there is an open interval $I_2 \subset I_1$ such that for each $x \in H^{y_1}$ the set $I_2 \cap D_x$ is nonempty and $f(x, v) - f(x, y_1) < \eta/4$ for every $v \in I_2 \cap D_x$. Put $B = (H^{y_1} \times I_2) \cap D$. Since for each $x \in H^{y_1}$ the section B_x is of positive measure, the set B is of positive measure. Fix a point $x_1 \in H^{y_1} \cap \operatorname{pr}_x F$. For every $(x, y) \in B$ we have

$$a \le f(x, y) \le f(x, y_1) + \eta/4 < f(x_1, y_1) + \eta/4 + \eta/4$$

< $a + \eta/4 + \eta/4 + \eta/4 < a + 3\eta/4.$

So, $\operatorname{osc}_B f < \eta$.

Theorem 0.5 Let $f : \mathbb{R}^2 \to \mathbb{R}$. If all sections $f_x, x \in \mathbb{R}$, are strongly upper τ_d equiquasicontinuous and if all sections $f^y, y \in \mathbb{R}$, have the Baire property, then f has the Baire property.

PROOF. The proof is similar as the proof of the previous theorem. As before we can suppose that f is bounded below. By Theorem 1 in [7] it suffices to prove that for every positive η and for every set $A \subset \mathbb{R}^2$ with the Baire property and of the second category there is a set $B \subset A$ with the Baire property and of the second category such that $\operatorname{osc}_B f \leq \eta$. Let $\eta > 0$ be a real number and let $A \subset \mathbb{R}^2$ be a set of the second category having the Baire property. Let A_1 be a nonempty open set such that $A_1 \setminus A$ is of the first category. There is a set $B_1 \subset \mathbb{R}$ of the first category such that if x is not in B_1 , then the section $(A_1 \setminus A)_x$ is of the first category. Let

$$a = (B) \operatorname{ess\,inf}_{A_1} f = \sup \{ \inf_{A_1 \setminus C} f; C \text{ is of the first category} \}$$

and let $A_2 = \{(x, y) \in A_1; f(x, y) \ge a\}$. Observe that (B) ess $\sup_{A_2} f = a$. Let $D = \{(x, y) \in A_2; f(x, y) < a + \eta/4\}$. Evidently D is of the second category. By the strong upper τ_d equiquasicontinuity of all sections $f_x, x \in \mathbb{R}$, for each point $(x, y) \in D$, there is an open interval I(x, y) with rational endpoints such that $I(x, y) \cap D_x \neq \emptyset$ and $f(x, v) < a + \eta/4$ for each point $v \in D_x \cap I(x, y)$. There is an open interval I_1 such that $E = \{(x, y) \in D; I(x, y) = I_1\}$ is of the second category, and consequently, its projection $\operatorname{pr}_x E$ is also of the second category. Let $F \supset \operatorname{pr}_x E$ be a Baire cover of $\operatorname{pr}_x E$ (i.e., a set with the Baire property such that if a set $C \subset F \setminus \operatorname{pr}_x E$ has the Baire property, then C is of the first category). Put $G = (F \times I_1) \cap D$ and let $y_1 \in I_1$ be a point such

that the section G^{y_1} has the Baire property and is of the second category. By the Baire property of f^{y_1} , there is a set $H \subset G^{y_1}$ of the second category with the Baire property such that $\operatorname{osc}_H f^{y_1} < \eta/4$. Let $I_2 \subset I_1$ be an open interval such that $I_2 \cap D_x \neq \emptyset$ and $f(x, v) < f(x, y_1) + \eta/4$ for each $x \in H$ and $v \in I_2 \cap D_x$. Then the set $B = (H \times I_2) \cap D$ is of the second category, has the Baire property and $\operatorname{osc}_B f < \eta$. Since $B \subset A_2 \subset A$, the proof is completed. \Box

Remark 0.8 Observe that if a family of functions $f_t : \mathbb{R} \to \mathbb{R}, t \in S$, is such that for each $x \in \mathbb{R}$ and for each $\eta > 0$ there is an open set U such that x is not a density point of $\mathbb{R} \setminus U$ and if for each $t \in S$ and for each $u \in U$ we have $f_t(u) - f_t(x) < \eta$, then the functions $f_t, t \in S$, are strongly upper τ_d equiquasicontinuous.

Remark 0.9 Assume (MA). There is a function $f : \mathbb{R}^2 \to \mathbb{R}$ having all sections $f_x \tau_d$ continuous and τ_{ae} quasicontinuous and all sections f^y measurable such that for some τ_e continuous function $g : \mathbb{R} \to \mathbb{R}$ Carathéodory's superposition $h(x) = f(x, g(x)), x \in \mathbb{R}$, is not measurable.

PROOF. Let $C, D \subset (0,1)$ be Cantor sets such that $C \subset D, \mu(C) = 0$ and every point $x \in C$ is a density point of the set D. There is a τ_e continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $g(D) \subset C$ and $g(x) \neq g(u)$ for $u \neq x$. Let $A \subset D$ be a nonmeasurable set and let $x_0, \ldots, x_\alpha, \ldots, \alpha < \omega$, be a transfinite sequence of all reals such that for each $\alpha < \omega$ the set $A_{\alpha} = \{x_{\beta}; \beta < \alpha\}$ is of measure zero. For each $x = x_{\alpha} \in A$ there is a τ_d continuous function $k_x: \mathbb{R} \to [0,1]$ such that $k_x(y) = 0$ if $y \in (\mathbb{R} \setminus D) \cup A_\alpha, y \neq g(x)$ and $k_x(g(x)) > 0$ ([1]). Similarly if $x = x_\alpha \in \mathbb{R} \setminus A$, then there is a τ_d continuous function $k_x : \mathbb{R} \to [0,1]$ such that $k_x(y) = 0$ if $y \in (\mathbb{R} \setminus D) \cup A_\alpha \cup \{g(x)\}$. Moreover let ϕ be a function having the same properties as the function f (constructed for the set D) from the proof of Remark 0.6. Let $f(x, y) = k_x(y)$ if $y \in D$ and $f(x, y) = \phi(y)$ if y is not in D. By Lemma 0.1 all sections f_x are τ_{ae} quasicontinuous and τ_d continuous. All sections $f^y, y \in D$, are equal to zero almost everywhere, and hence they are measurable. If $y \in \mathbb{R} \setminus D$, then the section f^y is constant. Moreover, $\{x; h(x) = f(x, g(x)) > 0\} = A$ and A is not measurable. So h is nonmeasurable.

Remark 0.10 There is a function $f : \mathbb{R}^2 \to [0,1]$ having all sections f_x and f^y strongly τ_d quasicontinuous such that the function $h(x) = f(x, x), x \in \mathbb{R}$, is nonmeasurable. For example, if $A \subset (0,1)$ is a nonmeasurable set, then the function f(x, y) = 1 for y > f(x) or y = f(x) whenever $x \in A$ and f(x, y) = 0 otherwise, satisfies the above condition.

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
- R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461-465.
- [3] A. L. Fudali, On cliquish functions on product spaces, Math. Slovaca 33 (1983), 53-58.
- [4] Z. Grande, On the limits of sequences of Darboux a.e. quasi-continuous functions, Acta Univ. Carolinae, Math. et Phys. 34 No. 2 (1993), 41-46.
- [5] Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition F(x, f(x)), Dissert. Math. 159 (1978), 1-50.
- [6] Z. Grande, On the product strong quasicontinuity, in preparation.
- [7] Z. Grande, Sur la propriété de Baire d'une fonction de deux variables ponctuellement discontinue par rapport à une variable, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 25 (1977), 349-354.
- [8] Z. Grande and T. Natkaniec, On some topologies of O'Malley's type on the plane, Real Analysis Exch. 18 No.1 (1992-93), 241-248.
- R. J. O'Malley, Approximately differentiable functions: The r topology, Pac. J. Math. 72 (1977), 207-222.
- [10] E. Marczewski and Cz. Ryll-Nardzewski, Sur la mesurabilité des fonctions de deux variables, Annales Soc. Polon. Math. 25 (1953), 145–154.
- [11] N. F. G. Martin, Quasi-continuous functions on product spaces, Duke Math. J.28 (1961), 39-49.
- [12] T. Neubrunn, Quasi-continuity, Real Analysis Exch. 14 No.1 (1988-89), 259-306.
- [13] D. Peek, Baire functions and their restrictions to special sets, Proc. Amer. Math. Soc.30 (1971), 303-307.
- [14] S. Saks, Theory of the integral, New York 1937.