T.S.S.R.K. Rao, Indian Statistical Institute, R.V. College Post, Bangalore – 560 059, INDIA, tss@isibang.ernet.in

ON A THEOREM OF DUNFORD, PETTIS AND PHILLIPS

Abstract

In this short note, we give a more 'direct' proof of a classical theorem of Dunford, Pettis and Phillips, that any weakly compact operator from $L^{1}(\mu)$ into a Banach space X is representable.

Introduction

Let $(\Lambda, \mathcal{A}, \mu)$ be a finite measure space and X a Banach space. Let us recall from [4], that an operator $T: L^1(\mu) \longrightarrow X$ is said to be representable if \exists a $g \in L_{\infty}(\mu, X)$, such that

$$T(f) = \int_{\Lambda} fg d\mu \qquad \forall f \in L^1(\mu)$$

With this notation, the theorem of Dunford-Pettis-Phillips (Theorem 12, Page 75 of [4]) can be stated as :

Theorem Every weakly compact operator from $L^1(\mu)$ into X is representable.

We give below a more direct proof (than, we believe the one given in [4]) based on a recently uncovered 'Fact' due to de Reyna et al [3]. This author recently gave a different proof of 'Fact' in [7] by using a result of Rosenthal that, seperability is euivalent to countable chain condition for weakly compact sets. A proof of this result of Rosenthal without using the Dunford and Pettis circle of ideas but only a result of Amir and Lindenstrauss that any weakly compact set is homeomorphic to a subset of $c_0(\Gamma)(\text{see}[1])$, is available in [2]. Hence there is no circularity involved in the arguments we will be presenting below.

Key Words: Weakly compact operators, Space of Bochner integrable functions Mathematical Reviews subject classification: Primary: 46G10, 46E40 Received by the editors February 4, 1994

Fact Let K be a compact Hausdorff space and μ is finite, regular Borel measure on K. Let $f : K \longrightarrow X$ be a function that is continuous when X has the weak topology, then f is Bochner μ -integrable.

Proof of Theorem: Let K be the Stone space of $L^{\infty}(\mu)$ and \wedge denote Gelfand isometry between $L^{\infty}(\mu)$ and C(K). Let $\hat{\mu}$ be the finite regular Borel measure defined on K via the relation

$$\widehat{(\mu)}(A) = \int \widehat{\chi}_A^{-1} d\mu$$

for any clopen set $A \subset K$. See [8].

This association, via simple functions, also extends to an isometry between $L^{1}(\mu)$ and $L^{1}(\hat{\mu})$. Griem remarks in [6], that since countably valued functions are uniformly dense in $L^{\infty}(\mu, X)$, the Gelfand map also extends as an isometry between the spaces $L^{\infty}(\mu, X)$ and $L^{\infty}(\hat{\mu}, X)$.

Hence there is no loss of generality in proving the theorem for $L^1(\hat{\mu})$ and X. Let $T : L^1(\hat{\mu}) \longrightarrow X$ be a weakly compact operator. Since $L^1(\hat{\mu})^* = L^{\infty}(\hat{\mu}) = C(K), T^* : X^* \longrightarrow C(K)$ is weakly compact.

Let $\delta : K \longrightarrow C(K)^*$ be the Dirac map, which is a homeomorphism when $C(K)^*$ is equipped with the w^* -topology.

By Theorem 2, VI. 4.3 of [5], $T^{**} : C(K)^{**} \longrightarrow X$ is a w^* -weak continuous map.

Now $g = T^{**} \circ \delta : K \longrightarrow X$ is a weakly continuous function and by the 'Fact' quoted above, is $\hat{\mu}$ -Bochner integrable. Hence $g \in L^{\infty}(\hat{\mu}, X)$. To verify the equation, $T(f) = \int_{K} fgd\hat{\mu}$, for $f \in L^{1}(\hat{\mu})$, it is enough to prove the equation when $f = \chi_{A}$ for a clopen set $A \subset K$.

For any $x^* \in X^*$

$$\begin{aligned} x^* (\int_A g(k) d\hat{\mu}(k)) &= \int_A x^* (T^{**}(\delta(k)) d\hat{\mu}(k)) \\ &= \int_A T^*(x^*) d\hat{\mu} = T^*(x^*)(\chi_A) \\ &= x^* (T(\chi_A)). \end{aligned}$$

Therefore $T(\chi_A) = \int_A g d\hat{\mu}$.

Let $\mathcal{F}(L^1(\mu), X)$ denote the space of weakly compact operators and WC(K, X) denote the space of X-valued functions on K that are continuous when X has the weak topology, equipped with the supremum norm.

Corollary $\mathcal{F}(L^1(\mu), X)$ is isometric to the space WC(K, X), where K is the Stone space of $L^{\infty}(\mu)$.

ON A THEOREM OF DUNFORD ET.AL.

Remark Some of the geometric properties of the space WC(K, X), when K is any compact Hausdorff space, have been investigated in [3].

References

- [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
- [2] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific Math. J. 70 (1977), 309-324.
- [3] J. A. de Reyna, J. Diestel, L. R. Piazza and V. Lomonosov, Some observations about the space of weakly continuous functions, Questiones Mathematicae, 15 (1992), 415-425.
- [4] J. Diestel and J. J. Uhl, Vector Measures, A.M.S. Surveys 15, Providence R.I, 1977.
- [5] N. Dunford and J. T. Schwartz, Linear operators 1, Interscience, New York, 1958.
- [6] P. Griem, Banach spaces with the L¹-Banach-Stone property, Trans. Amer. Math. Soc. 287 (1985), 819-828.
- [7] T.S.S.R.K. Rao, Weakly continuous functions of Baire class 1, I.S.I. Tech. Report 3, March 1994.
- [8] W. Rudin, Functional Analysis, Tata MacGraw-Hill, 1974.