Josip E. Pečarić, Department of Mathematics, University of Zagreb, 41000 Zagreb, Croatia
Gh. Toader, Department of Mathematics, Technical University, 3400
Cluj-Napoca, Romania

THE PRESERVATION OF THE CONVEXITY OF FUNCTIONS

1 Introduction

Let us consider the classes of continuous, convex, starshaped and superadditive functions defined respectively by:

```
\(C(b)=\{f:[0, b] \rightarrow \mathbb{R}, f(0)=0, f\) continuous \(\}\)
\(K(b)=\{f \in C(b) \mid f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)\),
        \(\forall t \in(0,1), \forall x, y \in[0, b]\}\)
\(S t(b)=\{f \in C(b) \mid f(t x) \leq t f(x), \quad \forall t \in[0,1], x \in[0, b]\}\)
\(S(b)=\{f \in C(b) \mid f(x+y) \geq f(x)+f(y), \forall x, y, x+y \in[0, b]\}\).
```

In [2] it is proved that all these classes are preserved by the arithmetic integral mean A defined by

$$
A(f)(x)=\frac{1}{x} \int_{0}^{x} f(t) d t, \text { for } x>0, A(f)(0)=0
$$

Moreover, if for a given set F of functions we set

$$
M F=\{f \in C(b) \mid A(f) \in F\}
$$

in [2] it is proved that for any positive b the following strict inclusions hold:

$$
K(b) \subset M K(b) \subset S t(b) \subset S(b) \subset M S t(b) \subset M S(b)
$$

Simple proofs of these relations are also given in [5].

[^0]Received by the editors February 14, 1994

References [3] and [4] consider the integral operator W_{g}, defined by

$$
\begin{equation*}
W_{g}(f)(x)=\frac{1}{g(t)-g(0)} \int_{0}^{x} g^{\prime}(x) f(t) d t, \quad W_{g}(f)(0)=f(0) \tag{1}
\end{equation*}
$$

where g is a given differentiable function. In [5] it is proved that if W_{g} preserves one of the classes $K(b), S t(b)$, or $S(b)$, then the function g is necessarily of the form $g(x)=k x^{u}$ for some $u>0$ and some $k \neq 0$. If we denote the resulting operator by A_{u}

$$
\begin{equation*}
A_{u}(f)(x)=\frac{u}{x^{u}} \int_{0}^{x} t^{u-1} f(t) d t \tag{2}
\end{equation*}
$$

and if for a given set F of functions we set $M^{u} F=\left\{f \in C(b): A_{u}(f) \in F\right\}$, then it is proved that for any positive numbers b and u the following inclusions hold:

$$
\left.\begin{array}{cccccc}
K(b) & \subset & M^{u} K(b) & \subset & S t(b) & \subset
\end{array}\right) S(b)
$$

A similar result was proved for some classes of generalized convexity of order two in [6] and [7] and for convexity, starshapedness and superadditivity of higher order in [8].

Analyzing all these results, we can produce a general scheme that we want to consider in what follows.

2 A Class of Generalized Convex Functions

Let $D=\left(d_{j k}\right)_{n, m}$ be a $n \times m$ matrix and $C=\left(c_{j}\right)_{n}$ be a given n vector with the property that $c_{1}+\cdots+c_{n}=0$. Let

$$
D(b)=\left\{X=\left(x_{k}\right)_{m} \mid \sum_{k=1}^{m} d_{j k} x_{k} \in[0, b], j=1, \ldots, n\right\}
$$

and then, for any X from $D(b)$, the functional $L_{C D}(\cdot)(X): C(b) \rightarrow \mathbb{R}$ defined by

$$
L_{C D}(f)(X)=\sum_{j=1}^{n} c_{j} f\left\{\sum_{k=1}^{m} d_{j k} x_{k}\right\}
$$

Using them, we can define a general class of convex functions

$$
K_{C D}(b)=\left\{f \in C[0, b] \mid L_{C D}(f)(X) \geq 0, \quad \forall X \in D(b)\right\} .
$$

By adequate choices of C and D we get the sets of Jensen convex functions and of superadditive functions, usual or generalized, and of any order. For example the condition of superadditivity of $f \in C[0, b]$ is

$$
f\left(x_{1}+x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)+f(0) \geq 0, \forall x_{1}, x_{2}, x_{1}+x_{2} \in[0, b]
$$

and it becomes that given in the definition of $S(b)$ for f from $C(b)$. In [8] we considered also superadditivity of order $n>2$. For example $f \in C[0, b]$ is said to be superadditive of order 3 if

$$
\begin{aligned}
& f\left(x_{1}+x_{2}+x_{3}\right)-f\left(x_{1}+x_{2}\right)-f\left(x_{1}+x_{3}\right)-f\left(x_{2}+x_{3}\right)+f\left(x_{1}\right)+ \\
& \quad+f\left(x_{2}\right)+f\left(x_{3}\right)-f(0) \geq 0, \forall x_{1}, x_{2}, x_{3}, x_{1}+x_{2}+x_{3} \in[0, b] .
\end{aligned}
$$

For convexity and starshapedness we must refer to Remark 3.
The condition on C assures that the class $K_{C D}(b)$ is nonempty because it contains the constant functions. But we need a more precise condition. For this let us denote by P_{q} the set of polynomials of degree at most q.

Definition 1 The class $K_{C D}(b)$ is well defined if there is an integer $q \geq 1$ such that $L_{C D}(f)=0$ if and only if $f \in P_{q}$.

Remark 1 The determination of the value of q for C and D given is a problem of functional equations. Of course, necessary conditions are $L_{C D}\left(e_{k}\right)=0$ for $k=0, \ldots, q$, and $L_{C D}\left(e_{q+1}\right) \neq 0$ where $e_{k}(x)=x^{k}$ for $k \geq 0$. But it is a difficult problem to prove that they are also sufficient or to find simpler conditions. For some results and references see [1, pages. 129-131]. For example if $L_{C D}(f)(X)=\sum_{j=1}^{n} c_{j} f\left(x_{1}+(j-1) x_{2}\right)$, the value of q is less than 1 plus the order of multiplicity of the root $t=1$ in the equation $c_{1}+c_{2} t+$ $\cdots+c_{n} t^{n-1}=0$.

3 Main Results

We want to determine those functions g that give an integral operator W_{g}, defined by (1), which preserves the class $K_{C D}(b)$. We have the following result.

Theorem 1 If the class of functions $K_{C D}(b)$ is well defined and W_{g} preserves $i t$, then there is a positive number u such that $g(x)=v x^{u} \forall x \in[0, b]$.

Proof. For any p from P_{q}, because p and $-p$ belong to $K_{C D}(b)$, we have $W_{g}(p)$ and $W_{g}(-p)$ also in $K_{C D}(b)$ and this is equivalent to $L_{C D}\left(W_{g}(p)\right)(X)=$ $0 \forall X \in D(b)$. Thus $W_{g}(p)$ is in P_{q} as $K_{C D}(b)$ is well defined. Let $W_{g}\left(e_{k}\right)=p_{k}$ for $k=1, \ldots, q$. Differentiating these relations we get

$$
\begin{equation*}
\frac{g^{\prime}(x)}{g(x)-g(0)}=\frac{p_{k}^{\prime}}{e_{k}(x)-p_{k}(x)} \text { for } x \in(0, b], k=1, \ldots, q \tag{3}
\end{equation*}
$$

or, if we set $p_{k}(x)=a_{k 0}+a_{k 1} x+\cdots+a_{k q} x^{q}$, we have for $1 \leq k<h \leq q$

$$
\left(x^{h}-\sum_{j=0}^{q} a_{h j} x^{j}\right) \sum_{j=1}^{q} j a_{k j} x^{j-1}=\left(x^{k}-\sum_{j=1}^{q} a_{k j} x^{j}\right) \sum_{j=1}^{q} j a_{h j} x^{j-1} .
$$

For $h=q$ equating the coefficients of $x^{2 q-1}$ we get $a_{k q}=0$ for $k<q$. Then for $h=q-1$ and the power $2 q-3$, we deduce also $a_{k, q-1}=0$ for $k<q-1$ and by induction $a_{k j}=0$ for $k<j$. Thus $p_{1}(x)=a_{10}+a_{11} x$ and from (3), with $k=1$, we have $\frac{g^{\prime}(x)}{g(x)-g(0)}=\frac{a_{11}}{x-\left(a_{10}+a_{11} x\right)}$ which gives the result.

Using such a weight function we denote the resulting operator by A_{u}. It is given by (2). Also we introduce the following class of functions

$$
M^{u} K_{C D}(b)=\left\{f \in C(b) \mid A_{u}(f) \in K_{C D}(b)\right\} .
$$

Theorem 2 If X belongs to $D(b)$ for any $t \in[0,1]$ and any $X \in D(b)$, then for any positive u we have $K_{C D}(b) \subset M^{u} K_{C D} b$.
Proof. Substituting $t=x s^{1 / u}$ in $A_{u}(f)$ we get $A_{u}(f)(x)=\int_{0}^{1} f\left(x s^{1 / u}\right) d s$. So for any X from $D(b)$

$$
\begin{aligned}
L_{C D}\left(A_{u}(f)\right)(X) & =\sum_{j=1}^{n} c_{j} A_{u}(f)\left(\sum_{k=1}^{m} d_{j k} x_{k}\right) \\
& =\sum_{j=1}^{n} c_{j} \int_{0}^{1} f\left(s^{1 / u} \sum_{k=1}^{m} d_{j k} x_{k}\right) d s \\
& =\int_{0}^{1} \sum_{j=1}^{n} c_{j} f\left(\sum_{k=1}^{m} d_{j k} x_{k} s^{1 / u}\right) d s \\
& =\int_{0}^{1} L_{C D}(f)\left(X s^{1 / u}\right) d s \geq 0
\end{aligned}
$$

because f is from $K_{C D}(b)$ and $s^{1 / u} X$ from $D(b)$.
Remark 2 The condition $[0,1] \times D(b) \subset D(b)$ holds, for example, if the matrix D is positive.
Remark 3 If instead C and D we use families of vectors C and of matrices D, all the above results remain valid. So we obtain similar theorems for various sets of convex or of starshaped functions. For example, the function $f \in C[0, b]$ is starshaped if $t f(x)-f(t x)+(1-t) f(0) \geq 0 \forall x \in[0, b]$ for every $t \in[0,1]$, that is, we have a set of conditions.

References

[1] J. Aczél, Lectures on functional equations and their applications, New York, London, 1966.
[2] A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math. 12 (1962), 1203-1215.
[3] I. Lacković, On convexity of arithmetic integral mean, Univ. Beograd. Publ. Elektrotehn. Fak. 381-409 (1972), 117-120.
[4] C. Mocanu, Monotony of weight-means of higher order, Anal. Numér. Théor. Approx. 1 (1982), 115-127.
[5] Gh. Toader, On the hierarchy of convexity of functions, Anal. Numér. Théor. Approx. 15 (1986), 167-172.
[6] Gh. Toader, On a general type of convexity, Studia Univ. Babes-Bolyai, Math. 31 (1986), 4, 37-40.
[7] Gh. Toader, On a generalization of the convexity, Mathematica 30 (53), (1988), 83-87.
[8] Gh. Toader, A hierarchy of convexity of higher order of functions, Mathematica 35 (58), (1993), 1, 93-98.

[^0]: Mathematical Reviews subject classification: 26A51 and 26D15

