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 AN INTEGRABILITY THEOREM FOR

 DIRICHLET SERIES

 Abstract

 In 1977 Leindler and Nemeth [4] proved a general theorem concerning
 integrabili ty of a power series. The present note deads with a similar
 problem for Dirichlet series.

 1 Let <¡> = {ip I <p(u) > 0, ig non-decreasing and (p(u)/us(S > 1) is
 u

 non-increasing on (0,oo)}

 = {ip I inverse of ý belongs to the class <j>]

 P = {p I p[u) > 0, is non-decreasing and p(u2) < Rp(u)) u G (0, oo)}
 /(*) = Inverse of f{x).

 With a view to generalize a theorem of Jain [2] and a previous result
 of Leindler [3], Leindler and Nemeth [4] established the following theorem
 concerning integrability of a power series.

 Theorem 1 Let /i(t) be a positive non-increasing function on the interval
 (0, 1] such that

 oo

 (1.1) y^/i(l/n)n~2 < M ļi{'/k)k~l
 n - k

 and let {an} be a positive increasing sequence such that ^ < oo.
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 Suppose p £ P, 77 G <t> or ^ and F(x) = ^o° cn^n, 0 < x < 1.
 Then under the condition

 (1.2)

 if is a positive constant,

 (1.3) Ml-xM|F(x)|M|F(a;)|)€i(0,l)

 iff

 (1.4) ^fi"V(l/n)p(«)'? (¿|cfc|) < 00.
 n=l 'fc=0 /

 In this note we propose to examine a similar problem for Dirichlet series.
 Let

 00

 (1.5) f(t) = ^cke~Xkt, 0 < t < 00,
 0

 where Ao = 0, 1 = Ai < À2 < • • < An - > 00. In what follows we assume
 that

 (i) ^ ì j 1, 2, 3, . . . , n y 00,

 (ii) {An+i - An} is non-decreasing.

 We write Wn = ^ n ^ n > ļ #
 ^n^n- 1

 Writing A„ = n and x = the Dirichlet series reduces to the power series
 ES°cnx-.

 The earliest known result concerning integrability of a Dirichlet series is
 due to Owen [6] which states:

 ,00 r 00 y/p
 (1.6) / fityť^dtKK YlCnXñ{P+g-Pq)/q(*n-in-l)1-p
 j° Li

 where cn > 0, r > p > 1, q > 0.
 A generalization of (1.6) was later on given by Mulholland [5]. In what

 follows we prove the following general theorem for Dirichlet series which gen-
 eralizes the result of Leindler and Németh when rj(x) = <p(x).
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 In order to state our theorem we need the concept of almost monotone
 functions [l]1. A function / positive and finite on /& = [&,oo) is said to be
 almost increasing on /C(c > 6) if there exists a constant M > 1 such that
 f(x) < Mf(y) for each y > x > c. Similarly / is said to be almost decreasing
 on Ic if there exists a constant ra, 0 < ra < 1 such that f(x) > mf(y) for
 each y > x > c. It is obvious that every increasing (decreasing) function is
 almost increasing (almost decreasing) but the converse, need not be true. It is
 known that a function / is almost increasing on Ic iff there exists an increasing
 function g on Ic such that g(x) x f(x) on /c, that is to say A < f(x)/g(x) < B
 for x G /c, where 0 < A < B < oo. A similar characterization is true for an
 almost decreasing function. For various other properties of almost monotone
 functions see [1].
 We denote the class 0 by <f>* when monotonie property is replaced by almost
 monotonicity, that is to say, we define

 <j>* = {<p I ip(u) > 0, is increasing, is almost non-decreasing and
 u

 (p(u)/u6(S > 1) is non-increasing on (0,oo)}, and

 P* = {p I p[u) > 0, is almost non-decreasing and

 p(u2) < Rp(u ), u e (0, oo)}.

 Theorem 2 Let p,(t) be a positive almost non-increasing function on (0, 1]
 such that for p G P*

 oo

 (1.7) Yi ß(y^n)Wn+1p(Xn) < Mn(l/'k)'ïllP('k)
 Ti-k

 and let {an} be a positive sequence such that

 ti OA -^nWn+1 ^ ti (i-8) OA - <0°- ^
 1 a"

 Suppose <p G <t>* and for 0 < t < oo f(t) = cnc~Xnt, then under the
 condition

 (L9> cn>-A-A"+1~Av( A„ {anfi(l/'n)p{'n) A„ {anfi(l/'n)p{'n) J

 (1-10) f e"V(l -e-t)v>(|/(ť)|)^(|/(ť)|)dť < oo
 JO

 1This concept was introduced earlier by Mulholland [5] who termed it as quasi-monotone
 function.
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 iff

 (1.11) Wn+ifi(l/'n)<p ( ^2 |cfe| ) P ( ¿ |cfc| ļ < OO. 1 'k= 0 / U=0 )

 For An = n, e-t = x) rj(u) = <p(u) we deduce Theorem 1.

 2 The proof of our theorem depends mainly on the following lemma.

 Lemma 1 Let A(t) = Qke~Xkt, a* > 0, 0 < t < oo. ////, cp and p satisfy
 the conditions of our theorem, then

 (2.1) [ e"V(l - e't)(p{A{t))p(Aķ))dt < oo
 Jo

 iff

 00

 (2.2) ^Wn+1/i(l/An)^(5n)/>(5„) < oo,
 1

 where Sn = ££=0 ak .

 This includes, as a special case, a lemma of Leindler and Németh [4] for
 the case r¡(u) = <p(u).
 Proof. Writing x = e~ť and using the convention that C denotes a positive
 constant not necessarily the same at each occurrence, we have

 [ e-'/i(l - e-t)ip{A{t))p(A{t))dt Jo

 = J n(' - x)<p ^ p aķXXk j dx
 oo ri_ / oo ' / oo '

 = ¿ ri_ ļ n+l m(1 - í ¿ j p í ^2 a*xXk j dx

 > c- 1 (|> (i - ¿f ) , (x> (. - i) ")

 > C±wn+M 1/KW (t'- 0 - ¿y") ' (í> (i - £f")

 Ł (|> (,- ) , (|> (. - ¿)")



 730 Mazhar

 > CJ>„+1„ (¿) „ ((l - if S.) , ((■ - S,)

 > Wn+1/i (j") ¥>(5n)p(5„),

 since is increasing for x > 1 and tp(cT) > K<p(x), 0 < c < 1 and

 p(ax) < Kp(x), <z>0, Vx>d>0, p(d) ^ 0.

 Thus (2.1) => (2.2). Conversely,

 (23)

 / = j e"V(l - e-t)<p{A(t))p{A(t))dt

 00 / 1 ' / 00 ü+1)n / 1 ' *fc'

 n= 2 ^ n' 'j=0 k=nj ^ /

 (oo s.s-('-a (j + l)n , 'A*' ) (oo s.s-('-a (j + l)n , 'A*' )
 oo / oo (j + l)n . v Anj '

 <c^wnM(i/An)^ Y, afc
 n=2 'j=0 fc=n j ^ n' /

 (oo S.5,('-i) (j + l)n , x A„y -) ' (oo S.5,('-i) (j + l)n , x A„y -) '
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 Now,

 OO (j+ l)n

 E E
 i=0 k=nj n

 oo - (j + l)n

 =E('-r)A"' - ¿ "*
 j =0 n k-nj

 oo 0+1)" oo 0+1)"

 ^Se~Ay Ž ak<^2e-xi ¿ a*
 j=0 fc=nj j=0 /c=0
 oo oo

 = J^'ü + 1)n = 5Ze
 i=0 j= 1

 Hence from (2.3)

 oo oo ļ r oo

 (2.4) /<<7^/i( l/An)W„y> J3e-Ai"'5ni /> JV*"1.?,,,- "
 n=2 L» = l J Li=l

 Using the inequality (see [5], p.490)

 I Ei=1 °i. J I E.=i a¿ J E,=i «i
 and in view of the fact that

 m

 Am+i - ]^(^k+i "" ^k) > (^i - Ao)(ra + 1) = m + 1
 k=0

 implies
 oo oo

 »=1 1=1

 we have on writing YlîLi e"A'"1 = L > 1

 oo ļ r oo

 ? J ^e-^-'LSn./L /> Y,e~Xi~1LS"/L
 .* = 1 . .¿ = 1

 OO

 <C£e-Ai-'¥>(LS„iMLS„i)
 i = l

 OO

 <C£e-Ai-p(S»>(S„i),
 1 = 1
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 since p{Lx) < Kp{x) for x > c > 0. Hence from (2.4)
 oo oo

 J < cY, wnlx{i/'n)
 n= 2 t=l

 Since

 y r r ^ n ^n - 1 ^n» - 1 jxr ^ni^nť- 1
 Wn y r r = ~n n - - - ~n - - = Wniin jxr - An^n-l ^nAn-l ^nAn- 1

 < CWniXÌ < CWniA?
 Afl-1

 and in view of // being almost non-increasing function

 " (£) s
 Thus

 / < C¿e-Aí- A,2 ¿ WniAl Ít- Ì ^(Snť)p(5»i)
 í = 1 n=2 ' rit /

 < cjTe-x'->'f f> (tM Wm+MSm)p(Sm)
 i= 1 m=l
 oo

 < Wn+1fi(l/'n)<p(Sn)p(Sn),
 n= 1

 since

 ¿A?e-^-' < l + C¿A?_ie"Ai-'
 t = l i=2

 00 ' 2 00 1

 ¿ = 2 A«'-l >=2 A»'"1
 °° 1

 < I + CFt:

 This completes the proof our lemma. □

 3 Proof of the theorem. Let
 OO

 F(t) = ^2<ike~Xkt , 0 < t < oo,
 fc=0
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 with

 „„ = * (¿ł±p*Ł) V *» J V *» / ļ a„ii *>(•*») j
 Using the inequality:

 E X„<p(Sn) <Kf^XnV(^-f^Xk) n= 1 n = 1 V n kzzn J

 which holds for any Xn > 0 and an > 0 (See [4] p. 100) we have on writing

 Xn - (J¿) Wn+1p( A„)

 f> W„+1^(Sn)p(An)

 ~ /n í «» Er=„ M (¿) wk+lp{'k) '
 < /n y í «» Er=„ ,(1/An)Wn+1,(An) M (¿) wk+lp{'k) ' I

 'XnJ { fi-tjWn+MXn) J

 5KSw-""(¿)a,^0Ám0
 ¿í "»

 in view of (1.7) and (1.8).
 This implies that Sn = 0 (A£). Hence in view of the property of p we have

 (3.1) ¿Ww(¿)v>(Sn)/>(Sn)<00.
 Hence by our lemma

 (3.2) [ e~ř/i(l - e~t)<p(F(t))p(F(t))dt < oo.
 Jo
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 From (1.9) an + cn > 0 for all sufficiently large n, hence f(t) + F(t) =
 So°(a* + ck)e~Xkt implies in view of our lemma that

 (3.3) H e"V(l - e-'Ml F(t) + /(ť)|)/>(|F(ť) + f(t)')dt < oo
 Jo

 iff

 + c*)^ P (YA* + c*)^ < 00 • (3.4) ¿ Wn+lfi (^-) <p

 From (2.5) it follows that

 (3.5) <p(a + b)p(a + b) < K {<p(a)p(a) + ip(b)p(b)} , a > 0, 6 > 0.

 Suppose

 r e-v( i - '-'MmMwm < «>
 Jo

 then in view of (3.2) and (3.5), (3.3) is true, which in turn, implies (3.4). Now

 |c„| < 2 a„ + c„

 implies that ££=0 M < Ylk= o(cfc + ak) + H"=o so that

 ¿ Wn+in(l/'n)<p (f>|) p (¿>|)
 n = 1 'k=0 / 'k= 0 /

 < n w„+iß ( - n' Ì f ( H(a* + c^) + Yjak ) p ak ) "*■ 53 a* ) n= 1 ^ n' 'k=0 k=0 J 'k= 0 k= 0 /

 < i< ^ wn+ ifi <p ^¿(a* + c*)^ p + Cfc^

 + K II Wn + lA* (jj-) <P{Sn)p(Sn) < OO

 by virtue of (3.1) and (3.4). Conversely, suppose

 YjW„+ xh ip p (j>|) < oo.
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 Then in view of (3.1) and (3.5), (3.4) is true. Using (3.2) and (3.3) we have
 in view of (3.5)

 re-'rtl-e-'MmMlfm*
 Jo

 < f c-t/i(l - c-t)y(|/(<) + F(ť)| + F(t))p('f(t) + F(ť)| + F(t))dt < oo.
 J 0

 This completes the proof of our Theorem.
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