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 SOME EQUIVALENTS OF THE AP
 CONTROLLED CONVERGENCE

 THEOREM, THEIR GENERALIZATIONS
 AND A RIESZ-TYPE DEFINITION OF THE

 AP-INTEGRAL

 In this paper, the author will propose the definitions of ap variational con-
 vergence and an ap equi-integrable sequence. Their corresponding convergence
 theorems will be proved to be equivalent to the AP Controlled Convergence
 Theorem. By their equivalency, we prove the condition (3) of the AP Con-
 trolled Convergence Theorem is actually implied in other conditions. Then we
 will give some generalizations.

 Finally, a Riesz-type definition of the AP-integral will be given.
 These definitions and theorems are extensions of the oscillation conver-

 gence, equi-integrable sequence, Riesz-type definition, and their corresponding
 convergence theorems with respect to Henstock Integration (see [4], [8]).

 1 Prerequisites and Explanation

 Our problems are concerned with one dimensional AP-integration. The sets
 and functions involved are assumed to be Lebesgue measurable. The notation
 N means all natural numbers, M denotes all real numbers, [a, 6] stands for a
 bounded real closed interval, and (a, b) is bounded real open interval.

 The details of the following definitions and theorems are mainly from [1] ,
 [4] Section 22, [5] and [7] Chapter 7.8.

 5 = {Sr : i € 5}: We call a measurable set Dx C [a, b] an approximate
 neighbourhood (ap neighbourhood) if it has density 1 at x (or has x as a point
 of density, see [7]) and includes x. Given a measurable set E C [a , 6] , if for
 every x £ Eì and ap neighbourhood of x, Sx C [a, b] is chosen, then we say
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 the set S = {S* : x G E} is a choice of ap neighbourhoods on E , or a choice
 for short. (Gordon first defined it and called it a 'distribution', see [3]).

 Ss = {Ss,x : x G E} : the choice given by any S and 6 : E -¥ ( 0, -foo),

 by Ss,x = Sx 0 (x - ¿(x),x + ¿(x)).

 AFC on E' Given a choice S on E, if u,v G SXì x G [tz, v], we call x
 associated point of [ti,v]. The set of all intervals having an associated point
 x G E is called an approximate full cover (AFC) on D given by 5, denoted
 by A.

 { [ti,- , v,-] ; x,- : i = 1,2 We call a finite set of nonoverlapping [t£,- , V{] G
 A; ¿ = 1,2,..., Ar together with associated points X{ £ E a partial division
 of 5 on £ and denote it by {[uí,ví]; x¿ : z = 1,2,...,/:} or {[t/t-, vt*]; or
 {[w, v]; x} for short. If Un=i[u»> v»'] ^ E we call {[u, v]; x} a partition of 5 on
 E. IF a partial division (a partition) is of on E , we call it ¿-fine.

 Let Fi,Fļ, . . . ,Fn, . . . , F; /1, f2, ■■ ■ , /„, . • ■ , / be functions from [a, 6] to
 M, E C [a , 6] . We have the following definitions:

 lim ap]ìf(x) ) = A means there is SXn *o such that lim = A. X->X0 ) *o X-+XQ
 *€5x0

 If lim*-^ apf(x) = f(x o) we say / is ap continuous at xo. If / is ap contin-
 uous at every x G £, we say / is ap continuous on E , denoted by / € Cap(E).

 fav(x y o) = A means lim ap^-^- - lif®! = ^4 y I-4IO X - Xo

 F G (S)ACZp(E) if there exists a choice S on E such that for every e > 0,
 there exists an 77 > 0 and S : E - ► (0, 00) such that for any partial division of
 Ss on E : {[tz, v]; x}, whenever Yl(v ~~ u) < V we have 'F(u, v)' < et where
 F(u,v) =F(v)-F(u).

 00

 F e ( S)ACG'ap(E ) if E = [J Ei and F e (6)ACTap(Ei), i = 1,2,....
 Î = 1

 {Fn} G U(S)ACG*ap(E) ( U means uniformly) if Fn G ACG*ap(E ), n =
 1,2,... with the same 77, Ss and Ei in their definitions.

 / G ([a, 6]) , if there exists F such that F G (S)ACG*ap([aì 6]) and
 F'ap(x) = /(x) almost everywhere. We say F is a primitive of / and denote it
 by F = - //.
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 %

 / G (<^)-R*p([a, 6]) if there exist a constant I and a choice S on [a, 6] such
 that for any € > 0, there exists S : [a, 6] -» (0,oo) such that for any i-fine
 partition of S : {[u, v]; x}, we have

 <£-

 We denote this by (<5)/?*p - f* f = I.

 Remark 1.1

 (1) We note [3] and [5] that ( 6)D*ap([ai 6]) = (<5)i^([a, b ]) = AP([a , 6]), the
 last is defined by Burkill ([1], [2]).

 (2) The definitions of (S)AC*p(E)ļ . . . are equivalent to the Definitions of
 AC*p(E ), . . . respectively. F G AClp(E) means for every e > 0, there
 exists an 77 > 0 and a choice S such that for any partial division of
 S on E : {[u,v];x} whenever - u) < rj we have ^ v)| < e,
 and likewise F € ACG*p(E), and so on. For details see [5]. Hence for
 convenience sake we also denote F G ( 6)AC*p(E ) by F G AC^p{E) and
 sometimes we say F is AC*p(E), taking AC*p as a property as well as
 a set of functions and likewise for the other definitions.

 (3) The definitions of AC* pì AC G*apiD*ap are the revised versions of those
 defined in [1], and appearing in [6].

 ASL : We say F satisfies the Approximately Strong Lusin Conditions, ASL
 on a set H C M, if and only if there exists a choice S on H such that for every
 set E of measure zero and every e > 0, there exists Ss on H such that for any
 partial divisions {[12, v]; x} of Ss on E fi H , we have

 XX«, «OK e.
 We also denote this by F G ASL on H or UF is ASL on H" .

 U ASL: We say {F„} G U ASL if and only if Fn G ASL , n = 1,2,..., with
 the same S and S in their definitions.

 In the following, for convenience sake, we take the primitive of any AP-
 integrable function / : [a, 6] (-00, +00) toe F, given by F(x) = AP -
 J* f(t)dt. However we have not lost any generality because F(x) = G(x) -
 G(a) for any primitive G of /. We state the following two Theorems here to
 give some insight into the result of this paper.

 Theorem 1.1 (The AP Controlled Convergence Theorem , [5]).
 Let f and F be functions on [a, 6].
 Given a sequence of AP- integrable functions {fn} and f on [a, 6], denote

 the sequence of primitives of fn by {Fn}. If
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 (1) /n - > / almost everywhere on [a, 6] as n -¥ oo,

 (2) Fn are ACG*ap uniformly in n , and

 (3) Fn are convergent to F everywhere on [a, 6],

 then f is AP -integrable on [a, b ] and

 F(x) = AP - J [*f. J a

 Theorem 1.2 (The first equivalent of the AP Controlled Convergence Theo-
 rem).

 The following combination of conditions is equivalent to the combination
 of (1), (2), (3) in Theorem 1.

 (1) fn - V f almost everywhere on [a, 6] as n - y oo,

 (2) Fn satisfy ASL on [a, 6] uniformly in n,

 (3) For every e > 0, there exists closed E C [a , 6] , | [a, 6] ' E' < e such that
 Fn are AC(E) uniformly in n (for AC {E), see [ 4 ], [ty-

 (4) Fn - ► F everywhere on [a, 6].

 2 Fundamental Definitions

 Definition 2.1. Let F : [a, b] - > M and E C [a, b] be given. For every choice S
 on ¿J, let

 Vap{F 'S;E) = sup ^ v)|
 where the supremum is taken over all partial divisions {[ił,v];x} of S on E.
 We define the approximate variation of F on E by

 Vap(F]E) = inft/ûp(F;S;£)

 the infimum taken over all choices 5 on

 If Vap(F' E ) < oo, we say F is of ap bounded variation on E , denoted by
 FeBv;p(E).

 Proposition 2.1 F is of ap bounded variation if and only if there exists a
 choice S on E such that for any e > 0, there exists 6(e) : E - > (0,+oo) such
 that

 Vap(FiSs;E)-Vap(F-E)<e
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 Proof. By Lemma 3.4 of [5]. □
 The following functions FnF could be replaced by Fn - Fn(a), F - F (a)

 respectively without losing generality, hence we will assume them to have
 values 0 at point a.
 Definition 2.2. Let F and Fn be real valued functions on [a, 6].

 (a) A sequence of functions {Fn} is said to be ap variational ( apv ) convergent
 to F on ÄC [a, 6], if there exists a choice of ap neighbourhoods S on E
 such that for any given e > 0, there is a S : E - ¥ (0, H-oo) and an N G N
 such that Vap(Fn - F' Ss] E) < e for any n> N.

 (b) A sequence of functions {Fn} is said to be generalized ap variational
 ( apv g ) convergent to F on E C [a, 6], if there exists Ei C E i =
 1)2,..., U~i E' - E such that {F„} is apv convergent to F on Ei , i =
 1,2,....

 Definition 2.2* . Let F and Fn be real valued functions on [a, 6].

 (a) A sequence of functions {-Fn} is said to be an apv Cauchy sequence on
 E C [a, 6] if there exists a choice S oil E such that for any e > 0, there
 is a S : E - y (0, +oo) and an N G N such that

 Vap{Fm - Fn;Ss;E) < e

 for any n, m > N.

 (b) A sequence of functions {Fn} is said to be apv g Cauchy sequence on
 E C [a, b] if there exist Ei C E i = 1, 2, . . . , Ei = E such that {Fn}
 is apv Cauchy sequence on Ę, 2 = 1,2,....

 Proposition 2.2 A sequence of functions { Fn } is apvg convergent to some
 F on [a, 6] if and only if {Fn} is an apvg Cauchy sequence.

 PROOF. If: Let x G [a, &] be given, and let E% = Ek O [a, x] for k = 1, 2, . . . .
 For any e > 0, we have 6k : Ek -* (0, H-oo) and Nk G Ń such that Vap(Fm -

 Fn ; Ssk ; Eļ ' (J^=i Eī) < ^ for any m'n - Nk' Now let <*(*) = Mť) when
 t G E%' (J/=i E¿> defining E% = 0. Then Ss determines an AFC of [a,x],
 hence we have a ¿-fine partition on [a,x], {[u,-, xt} (cf. [1]), and

 oo

 'Fm(x) - Fn(x)| < '(Fm - Fn)(ui,vi)' < E ¿ = e>
 i k = 1

 whenever m,n > ma.Xi{Nk' 3x, G E% ' (JÍ=i E*}. So {Fm(x) - Fn(x)} is a
 Cauchy sequence of real numbers. Hence lim^oo Fn(x) exists for every x G
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 [a, b] and we denote it by F(x). Now for any £ > 0, we have 6k : Ek - ► (0, +oo)
 and Nk € N such that

 {Fm Fn] £>6k > F*k ) < £

 whenever m, n > Nk , and hence

 Vap{Fm ~~ F j J -Efc) < 5,

 i.e. {-Fn} is a/w# convergent to F on [a, 6].
 Only if: For any e > 0, we have Sk : Ek - ► (0, -f oo) and TV* E N such that

 Vapi-Fm - FniSsk]Ek) < Vap(Fm - F' Ssk]Ek) + Vap{F - Fn'Ssk ; Ek) < 2e,

 hence {Fn} is an apvg Cauchy sequence. □
 Definition 2.3. A sequence of functions {/n} is said to be ap equi-integrable
 on [a, b] if /n, n = 1,2,..., are ^4P-integrable on [a, 6] with the same S and S
 in the definition of ( 6)R*ap .

 3 Some Convergence Theorems Equivalent to that of
 Controlled Convergence and the Problem of the In-
 dependence of the Conditions for the AP Controlled
 Convergence Theorem

 We begin investigating the problem of equivalency between the condition of
 AP Controlled-Convergence Theorems and other types of conditions using
 apvg convergence or equi-integrability.

 The condition of equi-integrability is especially related to the values of the
 integrands fn. Generally speaking, if we change the values of fn even only
 at one point, it maybe enough to destroy the equi-integrability of {/„}. As a
 trivial example, let fn{x) = 0 for every x E [0,1], n = 1,2,..., then {/n} is
 equi-integrable, but if we replace the values of fn at any point a £ [0, 1] by
 fn(a) = n, then {/„} is no more equi-integrable. So it is wrong if we think
 that once {/„} is equi-integrable than any {gn} with gn{x) - fn(x) almost
 everywhere is also equi-integrable. But, however, we have the following.

 Lemma 3.1 Given a sequence of AP -integrable functions { fn } on [a, 6] such
 that

 (1) fn - y f almost everywhere;

 (2) {fn} is ap equi-integrable on [a, 6],
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 then for any sequence of functions { gn } with gn(x) = fn{z) almost everywhere
 on [a, 6], {</n} is ap equi-integrable if and only if {gn(x)} is bounded for every
 X € [a, 6].

 Particularly j if gn - ► / everywhere , then {<7n} is ap equi-integrable.

 Proof. We first point out that the primitives of gn and /„ are the same, so
 we can denote the sequence of primitives of {gn} by {-Fn}-

 Only if: It is obvious that gn(x) is bounded at any point x with gn(x) - ►
 f(x ), so we only need to prove ^n(^) is bounded at any point x with gn{x) -/*
 f{x).

 Let e > 0 and SS are given as in the definition of ap equi-integrable.
 Suppose there is x £ [a, b] such that gn{z) f(x) and {<7(x)} is unbounded.
 We take a t > 0 be such that for any ií, v with x € [u,v] C [x - t,x + 1] we

 3
 have |[u, v] O S^ļ > - v|- Let.

 H-{y: 9n{y) -»• f(y), y e (* -t,x + t) n5¿,s}.

 3 3
 Then by condition (1) we have 'H' > - • 2t = -t.

 4 Z

 For every y E we can define 6*(y) satisfying:

 (a) S*(y)<S(y),

 (b) x £ [y-S*(y),y + S*(y)] D 'x-t,x + t],

 (c) for any [a, ß] satisfying y € [a, ß] D [t/ - S" (y), y + i*(y)] we have

 |[a,/3]n5¿»,y| > ^{ß-a).
 Then the choice Ss* on H determine an AFC covering H in Vitali's sense.

 Hence there exists a sequence {[a,-, A]; 2/»}, i = 1, 2, . . . ,p, with y i E [or,-, /?,•] D
 [vi - S*(yi),Vi + and [a¿ ,/?,•] non-overlapping, such that

 E ikä] n &m»i > f w * Hť = fť-
 3

 But |[x - ť,x + ť] 05^x1 > -ť, hence there at least exists a y £ H and a,]6(a <

 ß) such that y E [a,/?] and a,/? € [y - Í* (y) , y 4- í*(y)] H H H
 (it is possible that one of a, ß is y itself).

 Hence

 I Fn(ß) - Fn(a) I < I Fn(ß) - Fn(y) - gn(y)(ß - y)|
 + |Fn(a) - Fn(y) - g„(y)(a - y)| + |ď„(y)||/? - a' < M
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 for some M > 0 because gn{y) is convergent. On other hand,

 I Fn(ß) - Fn(a) I > 'gn(x)''ß - a| - 'Fn(ß) - Fn(x) - gn(x)(ß - x)|
 - l-FnOr) - Fn(a) - gn(x){x - a)| > 'gn{x)''ß - a| - It.

 If { gn(x )} is unbounded, so is 'Fn(ß) - Fn(a)|. Thus we have got a contra-
 diction. Hence {<7n(z)} is bounded for every x £ [a , 6] .
 If: We point out that because {/n} is ap equi-integrable, so by the above
 proof, {fn} is bounded everywhere on [a, 6]. Now suppose {</„} is bounded at
 every x £ [a, b]. Let K = {x : ^n(^) ^ /n(z)}, it is easy to see that for any
 e > 0 there exists S' : [a, b] - > (0, + oo) satisfying:

 (a) Let S be given by the equi-integrability of fn . For any partial division
 {[u'.v'^x'} of Ssl on [a, 6], we have | ¿(/n(«V) - fn{x'){v' - u')l < e,
 for all n, and

 (b) for any partial division of Ss1 on {[u, v]; x}, we have | X3^n(x)(v~ w)l <
 I ^2fn{x)(v - u)| < €. This can be satisfied since fn{x) and gn(x) are

 bounded and |Ā'| = 0.

 Hence if we replace fn(x) by gn(x) on K, we will have for any partition of
 5^ on [a, 6],

 I ^2(F„(u', v') - gn(x')( v' - u'))|

 = I £(/„(«', «') - fn(x')(v' - ll'))| + £(/«(*') - 9n{x')W -U')'< U.

 i.e., {<;n} is ap equi-integrable.
 In particular if the sequence {^n} in Lemma 1 satisfies gn - >■ / everywhere,

 then {gn} is bounded everywhere on [a, 6], and hence {<7n} is ap equi-integrable.
 □

 Theorem 3.1 Given a sequence of AP -integrable functions { fn } on [a, 6] such
 that:

 (1) fn - > f almost everywhere ;

 (2) {fn} is ap equi-integrable on [a, 6],

 then f is AP -integrable on [a, b] and

 lim AP - [ fn - AP r f. n->°° Ja Ja

 Proof. By Lemma 1, without losing generality, we can assume that fn - > /
 everywhere.
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 By the definition of equi-integrable, there exists a choice of ap neighbour-
 hoods S such that, for any given e > 0, there is ¿(s) : [a, 6] -> (0,+oo) such
 that for any x € [a, i], and any ¿-find partition {|it,-, v¿]; x,} of Ss on [a, x], we
 have

 I Vi) - fn(Xi){Vi - u,))| < e.

 Here Fn is the primitive of fn. On the other hand, there is an N G N such that
 whenever m, n > N, for each of the points x¿ we have |/m(®») - /n(®«)l < e-
 Hence

 |Fm(x) - F„(ï)| < I ^(Fm(Ui, Vi) - fm(Xi)(Vi - ti,))

 + ^2(fn(xi) - fm(Xi))(vi - U,)|

 + I ^2(fn(Xi){Vi - Ut) - Fn(Ui, Vf))| < e[2 + (x - a)].

 Hence {F„(x)} is a Cauchy sequence for any x G [a, 6], so limn-+oo -Fn(®) =
 F(x) exists for every x E [a, 6], and 52 I v% ~~ f{x%){vi - ui)' < £ f°r any
 partition {[u,-, v»];®*} of Ss on [a,x], i.e. / is AP-integrable on [a, b] and

 lim AP - f fn = lim Fn(x) = F(x) = AP -if- □
 Ja n^°° Ja

 Lemma 3.2 Given a sequence of AP -integrable functions {fn} on [a, 6] with
 sequence of primitives {Fn}, if fn - > / everywhere , and Fn apvg converges to
 F j then {/n} is ap equi-integrable.

 Proof. Let {ft} be such that [a, 6] = |J*Li ^ an(^ {^n} is apv convergent
 to F on ft, k = 1,2, ... . Without loss of generality, let {ft} be pairwise
 disjoint.

 For any given e > 0, let, for p > 1,

 Kp = {x : |/„(x) -fm(x)' < e,m,n> p }.

 Then Kp C KP+i for p = 1,2,

 Hp = Kp' Kp-i with p = 2, 3, . . . , and Hi = Äi,

 then [a, 6] = U^i^p- Let 5 be a choice on [a, 6] corresponding to a apv
 convergence of Fn to F on ft for each k.

 On Hp fi ft , there exist a Spk : Hp 0 ft - ¥ (0, +oo) and an NPtk such that
 whenever m, n > for any partial division {[tz, v]; x} of SsPtk on Hp 0 ft ,
 we have

 £ K^m -*»)(«. «)I<2Ä*>
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 and I /m(x) - /n(z)| < s everywhere on Hp fl £*. Diminish 6Pik on Hp H Ek if
 necessary so that

 -fn(x){u- i>)| < n = 1,2 ,...,NPik

 for any partial division of Ssp k on HPD Ek-
 Then for any partial division of SsPtk on Hp fl Ek, and any n > NP)k we

 have

 £ |F„K v) - fn(x)(v - u)| < £ I (Fn - FNptk)(u, „)|

 + H 'FNPlk(u, V) - fNp+k (x)(v - ti) I

 + 5Zl/jv„,*(ar) - fn(x)'(v-u) < 2p+k_1 + - «)•

 With p fixed and the same process applied to every HPì p = 1,2,..., then
 we have a choice on [a, b] such that for any partial division of it on [a, 6] we
 have

 Y_ I l^nK V) - fn(x){v -U) | < ^ + e(6 ~ a) < (2 + 6 ~ a)^>

 i.e. {/n} is ap equi-integrable. □

 Theorem 3.2 Let {fn} be a sequence of AP -integrable functions on [a, 6].
 Denote the sequence of primitives of fn by {-Fn}- Suppose {/n} converges to
 a function f almost everywhere on [a, 6]. The following conditions (A), (B),
 (C), (D) are mutually equivalent , and any one of (A), (B), (C), (D) implies
 f is AP -integrable on [a, 6] and

 lim AP- r fn = AP - f /.
 n-*°° Ja Ja

 (A) {Fn}£UACG:p([a,b]);

 (B) (1) {Fn} satisfies UASL on [a, 6],

 (2) for every e > 0; there exists closed E C [a, 6], |[a, &] ' E' < e such that
 {Fn} e UAC(E) (for AC(E) see [4], [7]);

 (C) {-Fn} is apvg convergent to a function F on [a, 6];

 (D) After having redefined {fn{x)} o.t x £ {x : fn(x) f{x)} so that {/n(x)}
 is bounded we have {fn} being ap equi-integrable on [a, 6].
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 Proof. The equivalence between (A) and (B): see [5], Corollary 4.3 and its
 note.

 Before we prove "(B) implies (C)", we prove the following Lemma 3 and
 Lemma 4.

 Lemma 3.3 If an AP -integrable function g has primitive G being AC(E) on
 a closed E C [a, b], then g'E is AP -integrable on [a, 6] and

 AP - fb9XE(x)dx = G(b) - G(a) - ¿G(afe,6fe),
 Ja k = 1

 where (a*, 6*) are the components o/(a,6) ' E, and XE is the characteristic
 function of E .

 Proof of Lemma 3. Let H be the set of all points of density in E, then
 'E ' H' = 0 (see [7]). Let e * > 0) be given. Take tj from the definition of
 G G AC(E ), then take N so that ~a0 < V- ¿y the AP-integrabiilty
 of g there exists a choice of ap neighbourhood S with Sx = Sx H H C H
 when x £ H, such that for any e* > 0, there exists S : [a, 6] - ► (0,+oo)
 corresponding to e * as in the definition of ( 6)R*ap integration.
 We can choose suitable S satisfying:

 (1) i(x) < mini<fc<jv{77,6fc -ak) for every x e [a, 6], and when x £ (akibk),
 k E N we have <f(x) < min{x - a*, 6* - x},

 (2) Yli Vi) - g(xi)(vi - Ui)' < e* for any partial division {[u,-, v,-]; x»}
 of Ss on [a, 6],

 (3) for any partial division {[u¿, v¿]; x¿} of Ss on E ' H ì we have

 (a) ~~ ui) < V (because 'E ' H' = 0),

 (b) Yli |G(uť,t;i)| < e* by G being ASL} and

 (c) Ht (v* - u*)l < £* by g(x) being finite everywhere.

 For any partition {[u», t/,-], x»} of Ss on [a, 6], we define

 oo

 a = -"») - {GW - G(a) - Y2G(ak,bk)}'.
 I k = l
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 We let ^2ļ be the sum for those associated points € H, and be for
 Xi € E' H , giving

 ß = I ^5Xß(*.-)(v« - «<) + ^29XE{XÍ)(V¡ - u,)
 1 2

 - 22 G{ui,Vi) - 22 G{ui, Vi) + 22 G(u{,Vi)
 1 2 i

 OO

 + £ G(uiVi) - (G(b) - G(a) - 22 G(ak, 6fc)}|.
 2 k = l

 When X{ £ E we have gXE(x%){vi - w») = 0, so these terms disappear from
 the sum.

 Since Sx C H when x G H , the ix,-, Vi appearing in must be in E. The
 Ui^Vi appearing in may be in E or not. For each U{ not in E , Ui must be
 in (a/c,6fc) for a certain k , and for each vj not in E , Vj must in for a
 certain If we replace U{ by 6/c, and Vj by a¿, we get a sum G(uļ, with

 v- G E and by condition (3)(a) we have ^22(vi - < 5Z2(V* - tz,-) < *7,
 hence £2 v<)| <£*■

 Let C = v*) ~~ G(u't,v¿)), then |C| < 2e* . Rewrite Q as:

 = i 229(x¡)(ví ~ + - «o
 1 2

 1 2 1

 + + C + + ^G(a/:,6fc) - G(&) + G(a) |;
 2 3 4

 here is the sum for those k such that for every (ut-,vt) appearing in ^
 or £^2> {ak^k <£ {v>i,vi). By the condition (1) for <5, G(afCibk) with k =
 1, 2, . . . , N appear in ^3. And is the sum for those k other than those in
 J23. Hence we have

 22 G(ui,vi) + 22 G(u'i>v'i) + E 6* = - G(a)-
 1 2 3

 Also SJGfafc.MI < £* So

 ň = - «») + 229(Xiï(Vi ~ u') ~22G(Ui' v') -^2G(ui'v¡)
 1 2 12

 + G(6) - G(a) + C + 22 °(ak - 6fc) - G(6) + G(a) I < e* + 2e* + £* = 4e* .
 4

 Thus Lemma 3 has been proved. □
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 Note: In the proof of Lemma 3, we only have used the ASL condition of G,
 and the quality of 77 that whenever Ylk>N^k ūk) < V ^or some N we
 have 'G(ak, &*)! < e* . But this quality also holds for G £ BV(E). So
 we have:

 Lemma 3.3* If we replace AC(E) by BV(E) in the conditions of Lemma 3,
 then the conclusion of Lemma 3 holds.

 Lemma 3.4 Let {.Fn} be a sequence of functions which are uniformly AC (E)
 where E i* a closed subset of[a,b'. Let H be the set of all points of density in
 E. Then there exists a choice S of ap neighbourhoods on [a, b] such that for
 any e > 0, there is S : [a, 6] - ► (0, +00) such that for any partial division of S$
 on H , ví]] Xi}, we have

 00

 1 F„ (u, •,!>,•) - {Fn(b) - Fn(a) - Fn(ck, <4)}| < e, n- 1,2,...
 k = i

 where (cki dk) are the components of (a, b)'{E 0 (U»[u»> ^])}-

 PROOF. We first refine S by Sx H H when x £ H and after having refined we
 keep denoting the choice by S. Let (a, b) ' E = U¿^i(a»> M where (at-, 6¿) are
 nonoverlapping. Take r' corresponding e from the definition of Fn G U AC {E)
 and N so that Y^ÍLnÍ^í ~~ ai) < V- Let 6 be defined as follows. For any x £ H,
 we denote the distance from x to 'Jk=1 [akibk by p(x). Since very ak)bk are
 not points of density of E, so p(x) > 0, we define ¿(x) < min{77, p(x)}. Hence
 for any partial division {[t/,, v,-]; xt} of Ss on H, by the definition of Í, we
 have: when k = 1, 2, . . . , N, (aki bk) are outside the (J vt] and every cki dk)
 included in one of [uí,Ví] actually is one of ( akibk ) with k > N. Hence we
 have

 oo

 I Y, F » ("'• ■»•-)- { *"» ( b ) - Fn (a) - £ Fn (C* , dk) } I = I Fn (<* , , dk) ' < S,
 k = l 4

 where (ckidk) appearing in are those included in one of Hence
 Lemma 4 is proved. □

 Corollary 3.1 Let the conditions of Lemma Ą hold. Further , suppose that
 each Fn is the primitive of an AP integrable function /n, n = 1,2,.... Then
 there exists a choice S of ap neighbourhoods on [a, 6], such that for any e > 0,
 there is S : [a, 6] - ► (0,+oo) such that for any partial division of Ss on H ,
 {[t/f, v»]; x«}, we have

 |£fn(u¡. ®<) - AP - J fn I < £, n = I, 2, . . .

 where E* = E fi (U,*[uť, v«])*
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 Proof. By Lemma 3.

 f 00
 AP- / f n = 1,2,...

 *=1

 where (c^cf*) are defined as in Lemma 4. Hence by Lemma 4 we have the
 Corollary proved. □
 Now let us prove "(B) implies (Cf .
 For any given £ > 0, there exists a closed E C [a, 6], |[a, 6] ' E' < - such

 Z

 that Fn G -AC(i?) uniformly and by EgorofFs theorem ([4]), we have closed
 H C E , I [a, 6] ' H' < e such that /„ - > f uniformly on H . Hence there is a
 sequence of closed subsets { Ek } of [a, 6] such that |[a, 6] ' (JfcLi = 0, and
 Fn G ACfSfc) uniformly and fn - > / uniformly on £* for every k G N.

 Let be the set of points of density in Ek , then we also have | [a , 6] '
 U*Li = 0. Hence for every k G N, and £* > 0 there is N G N such that

 x)| < e* for any x G Hk when n, m > TV. By Corollary 1 there is
 a choice 5 and a Í : iř* -> (0, +00) such that for any partial division {[u, v]; x}
 of 5<5 on Hfe, we have | ^ Fn{u) v) - AP - fE . for n = 1,2,.... Hence for any
 71,171 > N, we have

 I £(Fm(ti, v) - Fn(u, v) I < I £ Fm(u, v) - AP - j fm I

 + / /„I + |AP - / (/m - /n)| < 2e* -f
 ,/£• JE •

 E' = Hkr' .

 Since the inequality is for all partial divisions,

 £|Fm(u,tO - F„(U)V)|< (4 + 2|£T|)e*.

 Lastly, since K = [a, 6] 'Ui7/; is of measure zero, by condition (1) of (B), {Fn}
 satisfy ASL uniformly. Hence for any partial division {[i¿t-, v¿]; x¿} of a suitable
 Ss on K and any m, n G N, we have

 2 K*» - < E v,-)| + |Fn(Ui,t;,)| < 2e*.
 So {Fn} is an apvg Cauchy sequence on [a, 6], and hence {Fn} satisfies (C).

 (C) implies ( D ): By Lemma 2 and Lemma 1.

 (D) implies (A):
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 By Lemma 1, after redefinition on a subset of measure zero {/n(^)} is
 bounded for every x 6 [a, 6]. Let

 Ek-{x ' 'fn(x)' <k, n = 1,2,...}

 then [a, 6] = 'JkEk.
 For every Ek, given e > 0 let Sk ■ [a, 6] - >■ (0, +oo) be such that for every

 partial division of Ek, {[«», v<]; £,•}, we have

 I 5 2(Fn(ui,Vi ) - fn(xi)(vi - tt,)| < £,

 and hence £ f.) - /«(*•)(*>,• - u,)| < 2e.
 Let Tļ - -, then when - u¡) < tj, we have

 k

 53 I-M«»» w»)l < 2e + |/n(*.)| - «.) <2e + kr¡ = Ze.

 Hence Fn E AC*ap{Ek) uniformly, and (A) is true. □

 Corollary 3.2 The condition that Fn -ï F everywhere in [a, 6] is implied
 by the other conditions in the Controlled Convergence Theorem (i.e. Theo-
 rem 1.1) and likewise by the other conditions in the First Equivalent of the
 Controlled Convergence Theorem (i.e. Theorem 1.2).

 It is easy to see that the Conditions of (A) together with the Condition
 fn - > f almost everywhere in [a, b] are mutually independent. Likewise, the
 Conditions (or Condition) in any one of (B), (C), (D) together with the Con-
 dition fn - ► / almost everywhere in [a, b] are mutually independent. Hence
 we have got the least number of Conditions for the Controlled Convergence
 Theorem.

 4 Further Weakening of the Conditions for the AP Con-
 trolled Convergence Theorem and Some Other Con-
 vergence Theorems

 Now we generalize Theorem 3.2 by weakening the condition that fn - ► /
 almost everywhere in [a, 6]. For this purpose, we first make a few remarks
 about the question of absolute AP-integrability, and then we give a definition
 of "generalized ap mean convergence" and some properties of it.

 We call a function / absolutely AP-integrable if |/| is u4P-integrable. But
 we will prove that this definition is nothing but absolutely Henstock integrable.
 More precisely, we have



 714 K. Liao

 Lemma 4.1 Given a function f : [a, 6] - > M, if there exists a choice Ss on
 E C [a, b] such that

 sup E l/(*)K- «) < +°°
 with the supremum over all partial divisions {[tz, v] ; a?} of Ss on E, then f is
 absolutely Henstock integrable , i.e. Lebesgue integrable , on E, and vice versa.

 Proof. Let fs Ín{x) = max{- N, min(/(x),iV)} with N € N. Then fx is
 a bounded measurable function, hence fx is absolutely Henstock integrable,
 i.e. Lebesgue integrable, and

 J 'fN' < sup E 'fix)'(v - «)•

 Hence by the Monotone Convergence Theorem of Lebesgue integration, we
 have l/l being Lebesgue integrable.
 The reverse is direct. □

 Corollary 4.1 Given a function f on E C [a, 6], / is absolutely AP -integrable
 if and only if f is absolutely Henstock integrable .

 Hence we will not distinguish absolutely >lP-integrable from absolutely
 Henstock integrable, or Lebesgue integrable.
 Lemma 1 means that if any question can be reduced into a question of

 absolutely ^4P-integrable functions, then it can be solved by means of Lebesgue
 integration. In particular, we have.

 Corollary 4.2 (The Monotone Convergence Theorem for AP -integration) .
 Let fn ; n = 1,2,..., be AP -integrable functions on [a, 6], such that :

 (1) fn converge to a function f almost everywhere in [a, 6] as n - > oo;

 (2) /i(x) < /2(2) < • • • < fn(x) < • - ■ for almost all x 6 [a, 6];

 (3) AP - /a6 fn<M for some M > 0.

 Then f is AP -integrable and

 A P- Ja f f= n~>°° lim AP - Ja fu Ja n~>°° Ja

 Corollary 4.3 (Dominated Convergence Theorem for AP -integration). Let
 fni n = 1,2,..., be AP -integrable function on [a, 6]. If:

 (1) fn converges to a function f almost everywhere in [a, 6] as n - > 00, and
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 (2) there exist AP integrable functions g(x) and h(x) on [a, 6] such that
 9ÍX) < fn{x) < h(x)y n = 1,2,..., almost everywhere in [a, 6],

 then f is AP -integrable on [a,ò] and

 AP - f f = lim AP - f fn as n - > oc.
 Ja n->°° Ja

 What is important for us is that, by virtue of Lemma 1, the following
 definition become meaningful.
 Definition Ą.I. A sequence of functions /„ : [a, 6] - y ® is said to be generalized
 mean (mg) convergent to / : [a, 6] - ► M if there exists a sequence of sets
 Ek C [a, 6], [a, 6] = UfcLi ^ such that

 / |/n-/|->0 A = 1,2,... .
 J Ek

 We give the following properties of mg convergence, where {fn} is a se-
 quence of functions on [a, 6], {-Fn} is the sequence of primitives if fn are AP-
 integrable, / and F are functions on [a, 6], {£*} are as in the definition of mg
 'convergence, or of apvg convergence in accordance with the context.

 Proposition 4.1 If {/n} is mg convergent, then its limit function is unique.

 Proposition 4.2 {/n} is mg convergent if and only if there exists {Ek} as
 above such that

 / 'fn fm I ^ 0 as 7T1, Tí >• OO
 J Ek

 for k = 1, 2,

 Proposition 4.3 If {fn} is mg convergent to /, then there exists a subse-
 quence of {fn},{fnk}> converging to f almost everywhere in [a, 6].

 Proof. Mean convergence of a sequence {/n} to / on Ek implies that {fn}
 also converges to / in measure on Ek (cf. e.g. H.L. Royden's Real Analysis,
 third edition p. 95). Hence there exist subsequences {fn,k} of {/n} converging
 to / on Ek almost everywhere for every k G N, and {/n,k} D {/n,fc+i}- So the
 sequence {/*,*} converges to / on [a, 6] almost everywhere. □

 Proposition 4.4 If {Fn} apvg converges to F, then {fn} is mg convergent
 to a function f and F(x) = AP - f* f.
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 Proof. By {Fn} o.pvg converging to F , for every Ek , given any e > 0, there
 • exist N G N and ii such that for any partial division {[tí, v]; x} of Ss1 on Ek
 we have

 yz '{Fm - Fn)(u,v)' < £ for m,n > N.

 Let m, n > N be temporally fixed; there is ¿2 such that for any partial division
 {[u, v]; x} of Ss2 on Ek we have

 ^|Fm(u,v)-/m(z)(r-u)| < £; ^ |F„(w, v) - /„(a;)(v - u)| < e.

 Hence for any partial division Ss with S = min{¿i,Í2} we have

 yļ K/m - /n)(®)|(v - u) < 3e a sm,n> N.

 Hence by Lemma 1, we have

 f I fm ~~ fn I < 3e,
 JEk

 and by Proposition 1 and Proposition 2, there exists a function / uniquely
 such that fn - ► f(mg)-

 Now we prove F(x) = f* f . Given any £ > 0, there exist AT* £ N and a
 choice S<sfc fl such that for any partial division {[u, v]; x} of Ssk >2 on Ek we have

 K/ - /"OOOK" - w) < ļ • -Ļ'

 and

 ^|Fm(u,v) -/m(x)(v-u)| <

 Let 6k = min{Jfe ,1,^,2}, we have

 53 1^(«» v) - /(*)(» - «)i < ^

 for any partial division {[w, v]; x} of Ssk on Ek .

 Letting <5 : i(x) = ¿*(x) when x G Ek ' U!=o *®o = 0, fc = 1, 2, . .
 we have

 ^ I F(u, v) - f(x)(v - u)| < e

 for any partial division {[u, v]; x} of Ss on [a, 6], i.e.

 F(x) = AP - (X f. D J a
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 Proposition 4.5 If{Fn} apvg converges to F, then there exists a subsequence
 of {/n}> {/n*}, which converges to a function f almost everywhere in [a, 6], and

 F(x) = AP - J f f. J a

 Proof. By Proposition 3 and Proposition 4. □
 Now let us turn to setting up a weaker condition, in the presence of the

 conditions on Fn, to replace the condition that /„ - ► f almost everywhere in
 [a, 6] in the Controlled Convergence Theorem.

 Lemma 4.2 Let f : [a, 6] - ► M be AP-integrable on [a, 6] with primitive F.
 Then f is absolutely integrable on E C [a, 6] if and only if F £ AC*p(E).

 Proof. "Only if": We have G(x) = f* ' f'xE absolutely continuous. Hence
 for any e > 0, there exists 77 > 0 corresponding to e as in the definition of
 absolute continuity, and at the same time there exists ii : [a, 6] - > (0,+oo)
 such that for any ¿i-fine partial division {[u, v];x} on E (see [4])

 ¿2''f(z)'(v-u)-'G(u,v)''<e.
 On the other hand, there exists ¿2 : [a, 6] - > (0, +00) such that for any partial
 division {[u, v]' x} of Ss2 on E we have

 £||/(*)|(t,- u) -!*•(«, t/)||<e.

 Letting S = min{¿i, Í2}, we have for any partial division {[u, v]; x} of Ss on E

 J2''FM'-'G(U,V)''<2C,
 hence

 ^'F(u,v)'<¿2'G(u,v)' + 2e.
 Particularly if - u) < 1 7, we have £ l<F(w, v)| < i.e. F G AC*p(E).

 "IP: F € ACaV(E), so there exists a choice Ss such that for any partial
 division {[u, v];x} of Ss on E , we have

 ^2 |jF(". v ) - f(x)(v - u)| < £

 and v)'< M for some M > 0. Hence

 ^2 'f(z)'(v ~u) < 5Zl^(w.w)l + e < M + £.

 i-e- SE l/l < +00- □
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 Lemma 4.3 If {Fn} is apvg convergent to F on [a, 6], then {Fn } is
 UACG'ap([a,b)).

 Proof. By Proposition 4 there exists a function / on [a, 6] such that fn -»
 f(mg) and F(x) = AP - f* /. Hence there exist Ei, E<i, . . . , En , . . . with
 [a, 6] = 'JiEi , F G i4C£p(2?¿)- On the other hand, there exist iři, #2, • • • ,
 Hn , . . . such that for any Hj, there is Nj G N such that for n> Nj, fH. 'fn -

 /I < +00. Hence Fn - F e ACļp(Hj) whenever n > Nj, and therefore we
 have Fn G AC*ap(Hj D E¡) ¿=1,2,....

 Fk € AC:p(Kk¿) * = l,2,...,tfit- ¿=1,2,....

 Let = fifii = 1, 2, ... for any * = 1, 2, , JV}. Hence

 Fn G fi Hj fi ¿J¿) n = 1, 2, . . .

 with ¿p = 1,2, . . ., forjo = 1,2, . . ., j = 1,2,...; i = 1,2,

 Rearrange H Hj O Ei into a sequence and still denote this se-
 quence by { Ei } , and we have

 Fn G AC*p(Ei) n = 1,2, . . ., and F G AC*p(Ei) for ¿ = 1,2,... .

 Now we prove Fn G UAC*p(Ei) for ¿=1,2,

 For every ¿ G N, given e > 0, we have N G N, and 771 > 0 such that for
 any partial division {[u, v]; x} of Ss1 on Ei, we have

 53l(<Fn - ^)(u,v)| < e for n > N,

 and whenever ~~ u) < we ^ave 'F{U> v)l < e- On other hand, there
 exist rj2 > 0 and Ss2 such that for any partial division of S¿2 on Ei , whenever

 ~~ u) < rj2 we have

 y: u)l < e with k = 1,2 , . . . , TV.

 Let S = min{¿i, ¿2}, and r¡ = min^i, 772}, then for any partial division of
 Ss , {[w, v]; x}, whenever Yl(v - w) < 77 we have

 £|Fn(U,u)|<2e, 71=1,2,....

 i.e. {Fn} € UAC'ap{Ei) with ¿=1,2,.... Hence {Fn} € UACG'p([a, b]). □
 Now let us propose the following refinement of Theorem 3.2.



 The AP Controlled Convergence Theorem 719

 Theorem 4.1 Let {/n} be a sequence of AP -integrable functions on [a, 6], and
 let {Fn} be the sequence of the primitives of /„. The following (A*), (B*),
 and (CT ) are mutually equivalent.

 (A*) (1) {/n} is mg convergent to a function f,

 (2) {Fn}eUACGlp([a,b]);

 (B') (1) {fn} is mg convergent to a function f,

 (2) {Fn} satisfies UASL on [a, 6],

 (3) for every e > 0, there exists closed E C [a, 6], | [a , 6] ' E' < e such
 that {Fn} G UAC(E) (i.e. the rj in the definition of AC is independent
 ofn);

 (C*) {Fn} is apvg convergent to a function F on [a, 6].

 Hence ( C T ) implies fnmg converges to a function f. Any one of ( A *), ( B *),
 (CT ) implies f is AP -integrable and limn_»oo AP - f* fn = AP - f* f.

 Note : Since {/n} being equi-integrable strongly relies on the "pointwise"
 boundedness of {/n}, as we have pointed out at the beginning of paragraph
 3, we still have not any equivalent form of it in this theorem.
 Proof. . (A*) is equivalent to (B*): By the equivalent between (2) of (A*)
 and (2), (3) of (B*) (cf.. [5]).

 (B*) implies (C*): By investigating the proof for "(B) implies (C)" in the
 proof of Theorem 3.2, in order that (C*) is true, we actually only use condition
 (1), (2) of (B), i.e. (2), (3) of (B*), and the following condition:

 There exists a sequence of closed subset of [a, 6], Ek, such that

 |[a,6]'0£*l = Oand| f (fm - fn) | -+ 0
 /c-l JeI

 where Eļ = Ek fi [|J* fat» with v,-; x,} being any partial division of some
 suitable Ss on the set of all points of density in Ek •

 But this is implies by (B*) (1) hence we finish the proof.
 (C*) implies (A*): By Lemma 3 and Proposition 4. □
 Finally, we point out the relation between Theorem 3.2 and Theorem 4.1

 is

 Corollary 4.4 (A), (B), (C) implies (A*), (B* ), (CT) representively , and
 conversely j if {fn} satisfies (A* J, (B* ), (CT), then there exists a subsequence
 of {fn} satisfying (A), (B), (C).
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 5 Riesz-Type Definition of AP-Integral

 Lemma 5.1 Let {Fn} be a sequence of functions on [a, 6], If {Fn} is U AC
 on closed sets K' and K 2 with K' H if 2 = 0, then {Fn} is U AC(K' U K2).

 Proof. For any e > 0, there are 77,- > 0 with 1' = 1,2 defined as in the
 definitions of {Fn} G U AC (Ki). Let p be the distance from K' to Ä2, then
 min{?7i, 772, p} will satisfies the condition on 77 as in the definition of {-Fn} G
 UAC(K1öK2). □

 Lemma 5.2 If {-Fn} G UACG(E), then there exist closed Ei,E2, . . . , Er, . . .
 such that £1 C £2 C . . . C Er C = U^i Er U H with 'H' = 0, and
 {Fn} G U AC (Er), r = 1,2,....

 Proof. First, we prove that for every e > 0, there is a closed K C E such
 that {Fn} G UAC(K) and 'E'K' < e.
 Let Hki k = 1, 2, ... be such that £ = |X=i iFn} € UAC{Hk), k =
 1,2,... . Let i/o = 0, X* closed be such that Kk C Ü* ' U^o*

 I Hk ' (UřJo1 Hi) 'Kk' < 2¿iT' ^ = 1.2, • - - , and let ^ e N be such that

 I E ' ULi Hk' < ļe- Then K = (jf=i Kk is closed. Since {Fn} € UAC(Kk),
 and Kk H I'¿ = 0 for k £: by Lemma 1 we have {Fn} G UAC(K ), and

 N N k-l

 'E ' K' < '(E ' (J Hk) U { (J (Hk ' (J Hi' **)}! < e.
 k = 1 * = 1 ¿=0

 Hence for every i; 6 N, there exists a closed set Lk such that {Fn} G

 UAC(Lk) and |£'L*| < k = 1,2,... . Let £r = nr=r£*> then W
 satisfies the conditions of Lemma 2. □

 Theorem 5.1 Given f : [a, 6] - » (- oo,+oo); the following, i.e. (A), (B),
 (C), (D), ( B' ), (C ) and (D') are mutually equivalent :

 (A) / is AP -integrable with primitive F .

 (B) There is a sequence of absolute Henstock integrable functions {fn} (i-€-
 Lebesgue integrable functions, see [Ą]) on [a, 6], such that:

 (i) fn - y f almost everywhere;

 (ii) There exists E C [a, b], |[a, b] ' E' = 0 such that the sequence {Fn}
 of the primitives of fn with n = 1,2, . . . is U ACG(E);
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 (iii) Fn converges almost everywhere to a function F satisfying condition
 ASL.

 (C) The Conditions in (B) with fn being Lebesgue integrable replaced by fn
 being continuous , n = 1,2,...

 (D) The conditions in (B) with fn being Lebesgue integrable replaced by /„
 being a step- function, n = 1,2,....

 (B/, (C ), (U ): the conditions in (B), (C), (D) with UACG replaced by
 uacg:p.

 Proof. (B) implies (A): by condition (ii) and (iii) of (B), there exists H C
 [a, 6], |[a,6]'if| = 0, such that {i^} G UACG(H) and Fn F on H. Hence
 F E ACG(H). By (iii) of (B) F satisfies ASL , and hence if we take F as a
 sequence with all the elements being F , then by Lemma 2 and Theorem 3.2
 we have F G j4GG*p([a, 6]).

 By Lemma 2, there exist E' C £2 C . . . C Er C . . . , | [a, 6] ' Er ' = 0,
 and {Fn} G J7-AC(i?r). Let Gn,r be defined on [a, 6] to be equal to Fn on
 Er and linearly extending Gn,r from Er to closed intervals contiguous to Er.
 Likewise we define Gr from F. Then Gn,r> n = 1,2, . . . are UAC(Er). We
 will prove they are also U AC ([a, 6]).

 Given e > 0, there exists 77 > 0 corresponding to £ as in the definition
 of UAC(Er). Let UfcLi(a*>M = [a, 6] ' JE1,, where (a*, 6*) are the intervals
 contiguous to j Er, and TV G N is such that ~~ ak) < *1-

 Since Gn,r - ► Gr on [a, 6], there exists an L G N such that

 Gn,r(M - Gn,r(flfc ) _ GĻ,r(M ~ GĻ,r(flfc) <
 6^ - a/c - afe ""

 Gn,r(M - GĻ^rjbķ ) ~ Gņ^k) 4" G¿,r(flQ f
 - ak

 for = 1,2, . . . iV; and n> L. Hence,

 Gn,r(fcfe) ~ Gn,r(flfc) ^ G¿,r(^fc) ~ G¿,r(flfc) ^ ^
 bk - a/: bk - ak

 Let

 tlx

 Mr tlx  - ak 11 bk - ak 1

 Then we have |Gn,r(r) - Gn,r(y)| < Mr|ar - t/| for any x,t/ G [a*,6*], i =
 1,2, ...TV.
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 Now, let v* = min{i/, ¿7-}- Given any partial division on [a, 6], {[u,-, v,-], i =
 1,2,... m} , i.e. a < ui < v' < ui < V2 • • • < tx„ < vn <6, satisfying
 ~~ ui) < we make an appropriate revision to this division as fol-

 lows. If G [ût/c , 6/c] for one k or both Ui,V{ € Fr, we keep the end-
 points UiyVi unchanged. If U{ G (a^ , 6^) and Vi £ [<**,&*] we replace
 by [bk,Vi]. If Vi G ( dkybk ) and m £ [akìbk] we replace by
 [tx»,afc], [a*, v,]. After this revision, we denote the partial division by [tij, v(].
 Then we have

 oo oo

 £ |G»,r(®0 - Gn,r(U,)l < E - G».r(«í)l < 2£-
 1 = 1 ¿=1

 Hence, {Gn,r} € UAC([a, 6]).
 Now, ŁMG([a,6]) is equivalent to U AC* ([a, 6]), and hence we have that
 {Gn,r} G CMG*([a,6]), Gn,r(x) -+ Gr(x) on [a, 6], and

 (1) G'nr(x) = (F/v)áp(x) = /n(x) almost everywhere on Fr, and

 (2) G'nr(x) -> GJ.(x) everywhere on 6*).

 Hence, G^ r(x) converges almost everywhere on [a, 6]. In particular, we
 have that G'nr(x) = /n(x) = /(x) almost everywhere on Er. Hence, by [4]
 Corollary 7.7, we have G'r(x) = linin-^ G'n r(x) almost everywhere on [a, 6].
 But G'r(x ) = F'ap(x) almost everywhere on Fr, so we have F'ap(x) = /(x)
 almost everywhere on Fr. Because | [a, = 0, we have F¿p(x) = f(x)
 almost everywhere on [a, 6], i.e. F(x) = AP - f* /.

 (B') implies (A): By means of Corollary 3.10 of [5], we reduce (B') to (£),
 and hence "(B') implies (A) is true."

 (G), (D) are just special cases of (£), and (C'), (D') are special cases of
 (B'), so any of, (G), (D), (G'), (D') imply (A).

 (A) implies (J3) and (£').
 By Proposition 3.12 of [5] we have F satisfies conditions ASL and there

 exists E C [a, b] with '[a, b]'E' = 0 such that F G ACG(E). Hence by Lemma
 2 there exist closed E' C En C . . . C Er C . . . , [a, 6] = IJ^i Fr U H with
 'H' = 0, and F G AC(Er), r = 1,2,....

 Let Fn - F when x G En and linearly extend on the contiguous intervals
 dFn

 of En as in our proof of "(B)". Fn G AC([a, 6]), hence - r^- is L-integrable
 ax

 n = 1,2,... . Since Fn(x) take the same value for x G Er with r < n,
 so {F„;n > r} G ŁMC(Fr). Because Fi, Fi, . . . , Fr_i are AG([a,6]) they
 are of course AC(Fr), so if we add them into the family {Fn(x);n > r} we
 have {Fn; n = 1,2,...} G £MG(£r), hence {F„} G UACG({J?Ļ 1 Er), and
 I [a, 6] ' [j^°=1 Er | = 0. Thus the condition (ii) of (B) holds.
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 On the other hand, let Hr be the set of the points of density in Er . Then
 I Er 'Hr 1 = 0 and {Fn} G UACip(Hr), hence Fn G UACG*ap{ (J~ x Hr) with
 |[a, 6] ' U«i HA = 0, and the Condition (ii) of (B') holds.

 Since Fn(x) = F(x) on Er when n > r for r = 1, 2, . . . , we have Fn - > F
 almost everywhere on [a, 6] as n oo, i.e. the Conditions (iii) of (B) and
 (B') both hold. Also we have F„(x) = f(x) almost everywhere on Er when
 n > r. By limr_»oo Er = [a, 6] ' H , we have F¿(x) - ¥ f(x) as n oo almost
 everywhere on [a, 6], i.e. the Condition (i) of (B) and (B') holds. Hence (B)
 and (B') both hold.

 (A) implies (C) and (C').
 Let Fn , n = 1,2. . . be defined as in the proof of (A) implying (B) and

 (B'), and fn{x) = Eń(x)> 71 = 1,2,... . Then {/n} is a sequence of Lebesgue
 integrable functions, so there exists a sequence of continuous functions {<7n}

 such that ^
 'fn(x) -9n{x)'dx <

 For every Ery letting e > 0 be given, there exists N G N such that N > r

 and and because { Fn } G UAC(Er ), so there exists 77 > 0 cor-

 responding to -e as in the definition of UAC(Er). On the other hand,

 since Gn defined by Gn(x) = f* gn n = 1, 2, . . . are primitives of Lebesgue
 integrable functions, so they are j4C([a,6]), hence AC(Er ), so there exist
 tfn corresponding to Gn with respect to £ as in the definition of AC(Er).
 Let if = min{7;, 771, 772, . . . , 77^}. For any division with G Er,
 2Z»(V« - Ui) < 77*, when n < AT, we have |Gn(v¿) - Gn(ti,)| < £, and when
 n > N, we have

 53 KM».") - GnKOI = I / <7n(x)dx| < | Í fn(x)dx' + | ¿ < £. i ,• A; ¿

 Hence {Gn} € UACG([ i £■) with |[a, 6] ' (J~ i £r| = 0, and hence Condi-
 tion (ii) of (C) holds.
 The same discussion that showed (A) implied (B) and (B'), shows that we
 also have {Gn} being U ACG*ap(' i Hr) with |[a,6]' (J~1 Hr' = 0, i.e. the
 Condition (ii) of (C') holds.

 Because

 |G(„-.F„)(a:)| = I j Í9n{x) - fn(x))dx I -40asn-+oo

 we have Gn(x) - ► F(x) almost everywhere on [a, 6], i.e. the Condition (iii) of
 (C) and (C') holds.
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 Lastly, since

 l5n(x)-/„(x)| <

 the set

 Kn = {x : |ffB(*) - /„(«) I > -^}

 satisfies l/^nl < Hence | L£Lat+i ^1 < ^ an<^ therefore

 oo oo

 in u *«i=o.
 AT=ln=JV+l

 Since |flfn(®) - fn(x)' -> 0 whenever x G [a, 6] ' H~=i U~=jv+i #n, we have
 ^„(x) - ► f(x) almost everywhere on [a, 6], i.e. Condition (i) of (C) and (C')
 holds. Thus Conditions (C) and (C') both hold.

 (A) implies (D) and (D'): The same as the proof that (A) implies (C) and
 (CO- □
 Now we give a Riesz-Type Definition of ^IP-integral.
 Definition. Suppose a function f : [a, 6] - y (- oo, +oo) satisfies:

 (i) There is a sequence of step-functions {^>n} such that <pn - ► / almost
 everywhere on [a, 6],

 (ii) the sequence {$n} of primitives of (pn is UACG or UACG*ap on a set
 E CM |[a,6]'£| = 0,

 (iii) - ¥ F almost everywhere with F satisfying conditions ASL.

 Then we say / is Riesz Type ^4P-integrable, and F is the primitive of /,
 denoted by

 F(x) = RPap- r f.
 J a

 By Theorem 1, we have

 Corollary 5.1 RPap-integrability is equivalent to AP -integrability.

 I am grateful for the help of Lee Peng Yee who advised me to study these
 topics and gave me some idea of solving them and I also thank Bruce Calvert
 who has helped me with my research.
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