Ewa Lazarow¹, Department of Mathematics, University of Lódź, Banacha 22, 90-238 Lódź, Poland, e-mail: elazar@plunlo51.bitnet

Aleksander Maliszewski², Department of Mathematics, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland, e-mail: wspb05@pltumk11.bitnet

DECOMPOSITION OF *I*-APPROXIMATE DERIVATIVES

Abstract

It is shown that if $f: \mathbb{R} \to \mathbb{R}$ has a finite \mathcal{I} -approximate derivative $f'_{\mathcal{I}\text{-}ap}$ everywhere in \mathbb{R} , then there is a sequence of perfect sets, H_n , whose union is \mathbb{R} , and a sequence of differentiable functions, h_n , such that $h_n = f$ over H_n and $h'_n = f'_{\mathcal{I}\text{-}ap}$ over H_n . This result is a complete analogue of that on approximately differentiable functions by R. J. O'Malley.

The notion of \mathcal{I} -approximate differentiation [2] is based upon the notion of an \mathcal{I} -density point which was introduced in [5], and which further properties were studied in [6].

Throughout this paper, \mathcal{B} will denote the family of all subsets of \mathbb{R} (the real line) which possess the Baire property, and \mathcal{I} will denote the σ -ideal of all meager sets.

We say that 0 is an \mathcal{I} -density point of a set $A \in \mathcal{B}$ iff for every increasing sequence (n_m) of positive integers there exists a subsequence (n_{m_p}) such that

$$\chi_{(n_{m_p} \cdot A) \cap [-1,1]} \longrightarrow 1 \qquad \text{as } p \to \infty$$

except for a meager set. (The symbol $n_{m_p} \cdot A$ stands for $\{n_{m_p} \cdot y : y \in A\}$.) A point x_0 is an \mathcal{I} -density point of a set $A \in \mathcal{B}$ iff 0 is an \mathcal{I} -density point of $-x_0 + A$. (Similarly, $-x_0 + A = \{-x_0 + y : y \in A\}$.)

Key Words: points of I-density, I-approximate derivative

Mathematical Reviews subject classification: Primary 26A24. Secondary 26A21

Received by the editors October 10, 1994

¹Supported by a KBN Research Grant 691 02 91, 1991–94

²Supported by a KBN Research Grant 2 1144 91 01, 1992-94.

Let f be any finite function defined in some neighborhood of x_0 , and having there the Baire property. We define the *I*-approximative upper derivate as the greatest lower bound of the set

$$\bigg\{\alpha \in \mathbb{R}: \bigg\{x: \frac{f(x) - f(x_0)}{x - x_0} < \alpha\bigg\} \text{ has } x_0 \text{ as an } \mathcal{I}\text{-density point}\bigg\}.$$

The \mathcal{I} -approximate lower derivate is defined similarly. If the two derivates coincide, their common value is called the \mathcal{I} -approximate derivative of f at x_0 and denoted by $f'_{\mathcal{I}-ap}(x_0)$.

One can easily show that if f is \mathcal{I} -approximately differentiable at x_0 , then x_0 is an \mathcal{I} -density point of the set $\{y : |(f(y)-f(x_0))/(y-x_0)-f'_{\mathcal{I}-ap}(x_0)| < \varepsilon\}$ for each $\varepsilon > 0$.

During the Ist Joint US-Polish Workshop, Lódź 1994, M. Evans asked a question whether the decomposition theorem holds for \mathcal{I} -approximately differentiable functions. We will show it does.

For brevity, we introduce the notation $A \sqsubset B$ for $A \setminus B \in \mathcal{I}$. Moreover, for all $x \in \mathbb{R}, h > 0, n, k \in \mathbb{N}, i \in \{1, ..., n\}$ and $j \in \{1, ..., k\}$ we define

$$I_{ni}^{+}(x,h) = \left(x + \frac{i-1}{n}h, x + \frac{i}{n}h\right), \quad I_{ni}^{-}(x,h) = I_{ni}^{+}(x-h,h),$$
$$I_{nkij}^{+}(x,h) = \left(x + \frac{(i-1)k+j-1}{nk}h, x + \frac{(i-1)k+j}{nk}h\right)$$

and $J^{-}_{nkij}(x,h) = J^{+}_{nkij}(x-h,h)$.

We will prove the assertion of our main result in two stages. Before the proof we state two lemmas. The first one is an easy consequence of Theorem 1 of [1], and the other is purely technical.

Lemma 1 Suppose $A \in \mathcal{B}$ and x is an \mathcal{I} -density point of A. Then for every $n \in \mathbb{N}$ there are $k, p \in \mathbb{N}$ such that for each $h \in (0, p^{-1})$ and each $i \in \{1, \ldots, n\}$ we can find $j_1, j_2 \in \{1, \ldots, k\}$ with $J^+_{nkij_1}(x, h) \cup J^-_{nkij_2}(x, h) \sqsubset A$. \Box

Lemma 2 Let f be a function with the Baire property which restriction to some closed set K is continuous, and let $m \in \mathbb{N}$. For each $x \in \mathbb{R}$ define

$$A_m(x) = \{ y : |f(y) - f(x)| \le m|y - x| \}.$$

Then for each open interval G the set $B = \{x \in K : x + G \sqsubset A_m(x)\}$ is closed.

PROOF. Suppose there is a sequence (x_n) in *B* converging to some $x \notin B$, i.e., $(x+G) \setminus A_m(x) \notin \mathcal{I}$. Since $A_m(x) \in \mathcal{B}$, there is a non-degenerate closed

interval $U \subset (x+G)$ such that |f(y) - f(x)| > m|y-x| for \mathcal{I} -almost every $y \in U$. On the other hand, since $U \subset (x_n + G) \sqsubset A_m(x_n)$ for sufficiently large n, so for \mathcal{I} -almost every $y \in U$

$$\left|f(y)-f(x)\right|=\lim_{n\to\infty}\left|f(y)-f(x_n)\right|\leq\lim_{n\to\infty}m|y-x_n|=m|y-x|,$$

contrary to the previous inequality. Hence $x \in B$ and B is closed.

Theorem 1 Suppose $f : \mathbb{R} \to \mathbb{R}$ has a finite \mathcal{I} -approximate derivative $f'_{\mathcal{I}}$ -ap everywhere in \mathbb{R} . Then \mathbb{R} can be expressed as the union of a countable family of closed sets, \mathbf{E} , such that for each $E \in \mathbf{E}$ and each $x \in E$,

(1)
$$\lim_{y\to x, y\in E}\frac{f(y)-f(x)}{y-x}=f'_{\mathcal{I}-ap}(x).$$

(At an isolated point of E the conclusion is considered to hold vacuously.)

PROOF. It is well known, that \mathcal{I} -approximately differentiable functions are Baire * 1 [2, Theorem 3]. So there exists a family of closed sets, $\{K_l : l \in \mathbb{N}\}$, such that $\bigcup_{l \in \mathbb{N}} K_l = \mathbb{R}$ and for each $l \in \mathbb{N}$ the restriction $f|K_l$ is continuous.

For each $m \in \mathbb{N}$ and each $x \in \mathbb{R}$ define $A_m(x)$ as in Lemma 2. Moreover, for all $m, n, k \in \mathbb{N}$, $i \in \{1, \ldots, n\}$, $j \in \{1, \ldots, k\}$ and h > 0 define

$$C^{+}_{mni}(h) = \{x : I^{+}_{ni}(x,h) \sqsubset A_{m}(x)\}, \ D^{+}_{mnkij}(h) = \{x : J^{+}_{nkij}(x,h) \sqsubset A_{m}(x)\}, \\ C^{-}_{mni}(h) = \{x : I^{-}_{ni}(x,h) \sqsubset A_{m}(x)\}, \ D^{-}_{mnkij}(h) = \{x : J^{-}_{nkij}(x,h) \sqsubset A_{m}(x)\},$$

and for each $p \in \mathbb{N}$ let E_{mnkp} be the set

$$\bigcap_{h\in(0,p^{-1})} \left[\bigcup_{i=1}^n C^+_{mni}(h) \cap \bigcup_{i=1}^n C^-_{mni}(h) \cap \bigcap_{i=1}^n \left(\bigcup_{j=1}^k D^+_{mnkij}(h) \cap \bigcup_{j=1}^k D^-_{mnkij}(h) \right) \right].$$

We will prove that the family $\mathbf{E} = \{E_{mnkp} \cap K_l : m, n, k, p, l \in \mathbb{N}\}$ fulfills the requirements of the theorem.

First observe that by Lemma 2, each set $E_{mnkp} \cap K_l$ is closed. We will show that $\bigcup \mathbf{E} = \mathbb{R}$. Take an $x \in \mathbb{R}$ and an $m > |f'_{\mathcal{I}\text{-}ap}(x)|$. Since f is \mathcal{I} -approximately differentiable at x, x is an \mathcal{I} -density point of $A_m(x)$. Now use Lemma 1 to find $n, p_1 \in \mathbb{N}$ such that for each $h \in (0, p_1^{-1})$ there are $i_1, i_2 \in \{1, \ldots, n\}$ with $I^+_{ni_1}(x, h) \cup I^-_{ni_2}(x, h) \sqsubset A_m(x)$. Using Lemma 1 again, we can find $k, p_2 \in \mathbb{N}$ such that for each $h \in (0, p_2^{-1})$ and each $i \in \{1, \ldots, n\}$ there are $j_1, j_2 \in \{1, \ldots, k\}$ for which $J^+_{nkij_1}(x, h) \cup J^-_{nkij_2}(x, h) \sqsubset A_m(x)$. Set $p = \max\{p_1, p_2\}$. Then evidently $x \in E_{mnkp}$. Since $\bigcup_{l \in \mathbb{N}} K_l = \mathbb{R}$, we get $\bigcup \mathbf{E} = \mathbb{R}$.

It remains only to show that f is differentiable relative to each $E_{mnkp} \cap K_l$ and differentiates to $f'_{\mathcal{I}\text{-}ap}$. Fix an $E = E_{mnkp} \cap K_l \in \mathbf{E}$ and an $x \in E$. Let (x_r) be a sequence of points of E converging to x. It will not hurt the generality of the argument to assume that x = 0, f(0) = 0 and $x_r > 0$.

Note that for each $y_1, y_2 \in E$ with $0 < |y_1 - y_2| < p^{-1}$ we have

(2)
$$|f(y_2) - f(y_1)| \le m|y_2 - y_1|$$

Indeed, let $y_1 < y_2$. By the definition of the set E, there is an $i \in \{1, ..., n\}$ with $y_1 \in C^+_{mni}(y_2 - y_1)$. Further there exists a $j \in \{1, ..., k\}$ such that $y_2 \in D^-_{mnkij}(y_2 - y_1)$. Hence we can find a $z \in A_m(y_2) \cap A_m(y_1) \cap (y_1, y_2)$. So

$$\begin{aligned} \left| f(y_2) - f(y_1) \right| &\leq \left| f(y_2) - f(z) \right| + \left| f(z) - f(y_1) \right| \\ &\leq m |y_2 - z| + m |z - y_1| = m |y_2 - y_1|. \end{aligned}$$

Now fix an arbitrary $\varepsilon > 0$. Set $V = \{y : |f(y)/y - f'_{\mathcal{I}\text{-ap}}(0)| < \varepsilon\}$. Then 0 is an \mathcal{I} -density point of V.

Take an arbitrary integer $s > 1/\varepsilon$ and put t = ns. By Lemma 1, we can find a $p_t > p$ such that for each $h \in (0, p_t^{-1})$ and each $j \in \{1, \ldots, t\}$,

(3)
$$I_{tj}^+(0,h) \cap V \notin \mathcal{I}.$$

Let r_0 be such that $x_r < p_t^{-1}$ for $r > r_0$. Since $x_r \in E_{mnkp}$, for each such r there exists an $i \in \{1, \ldots, n\}$ with $I_{ni}^-(x_r, x_r/s) \sqsubset A_m(x_r)$. So by (3), we can choose a $y_r \in V \cap A_m(x_r) \cap ((1 - \varepsilon)x_r, x_r)$. Now

$$\begin{split} \limsup_{r \to \infty} \left| \frac{f(x_r)}{x_r} - f'_{\mathcal{I}\text{-}\mathrm{ap}}(0) \right| &\leq \limsup_{r \to \infty} \left| \frac{f(x_r) - f(y_r)}{x_r - y_r} \right| \cdot \limsup_{r \to \infty} \left(1 - \frac{y_r}{x_r} \right) \\ &+ \limsup_{r \to \infty} \left| \frac{f(y_r)}{y_r} - f'_{\mathcal{I}\text{-}\mathrm{ap}}(0) \right| \cdot \frac{y_r}{x_r} + \left| f'_{\mathcal{I}\text{-}\mathrm{ap}}(0) \right| \cdot \limsup_{r \to \infty} \left(1 - \frac{y_r}{x_r} \right) \\ &\leq m \cdot \varepsilon + \varepsilon + \left| f'_{\mathcal{I}\text{-}\mathrm{ap}}(0) \right| \cdot \varepsilon = \left(m + 1 + \left| f'_{\mathcal{I}\text{-}\mathrm{ap}}(0) \right| \right) \cdot \varepsilon. \end{split}$$

Since $\varepsilon > 0$ can be arbitrary, the above inequality completes the proof. \Box

The theorem below is the so-called decomposition theorem. (The sequence (h_n, H_n) is called a decomposition of f. The corresponding sequence (h'_n, H_n) is a decomposition of $f'_{\mathcal{I}-ap}$.) It is completely analogous to that for approximately differentiable functions by R. J. O'Malley [3, Theorem 2].

Theorem 2 If $f: \mathbb{R} \to \mathbb{R}$ has a finite \mathcal{I} -approximate derivative, $f'_{\mathcal{I}-ap}$, at every point of \mathbb{R} , then there is a sequence of perfect sets, H_n , and a sequence of differentiable functions, h_n , such that

$$(i) \bigcup_{n \in \mathbb{N}} H_n = \mathbb{R},$$

(ii)
$$h_n(x) = f(x)$$
 over H_n , and

(iii)
$$h'_n(x) = f'_{\mathcal{I}-ap}(x)$$
 over H_n .

PROOF. We will first obtain sets H_n . Let E_n be the sets defined in Theorem 1. Each closed set can be written as the sum of a countable family of non-degenerate closed intervals, a countable family of nowhere dense perfect sets and a countable set, so we may assume that each E_n is either a non-degenerate closed interval, a nowhere dense perfect set or a singleton.

If E_n is a non-degenerate closed interval or a nowhere dense perfect set, then we set $H_n = E_n$. Since by (1), f is differentiable over H_n , we are able to apply the theorem of Petruska and Laczkovich [4]. This theorem guarantees the existence of a differentiable function, h_n , such that $h_n = f$ over H_n . Then by (1), $h'_n = f'_{\mathcal{I}\text{-}ap}$ over H_n .

So assume that E_n is a singleton. We will be done if we construct a nowhere dense perfect set $H_n \supset E_n$ such that

(4)
$$\lim_{y \to x, y \in H_n} \frac{f(y) - f(x)}{y - x} = f'_{\mathcal{I}\text{-}\mathrm{ap}}(x)$$

holds for each $x \in H_n$.

Let $E_n = \{x\}$. It will not hurt the generality of the argument to assume that x = 0 and f(0) = 0. Set $\lambda_0 = \infty$. We will construct by induction two sequences of non-empty nowhere dense perfect sets, P_k and Q_k , and a sequence of positive numbers, λ_k , such that the following conditions hold:

- $\lambda_k \searrow 0$ as $k \to \infty$,
- for each $k \in \mathbb{N}$ there are $r_k, l_k \in \mathbb{N}$ such that $P_k \subset E_{r_k} \cap (\lambda_k, \lambda_{k-1})$ and $Q_k \subset E_{l_k} \cap (-\lambda_{k-1}, -\lambda_k)$,
- $|f(y)/y f'_{\mathcal{I}-ap}(0)| < k^{-1}$ for each $k \in \mathbb{N}$ and each $y \in P_k \cup Q_k$.

Suppose we have already constructed non-empty nowhere dense perfect sets $P_1, Q_1, \ldots, P_{k-1}, Q_{k-1}$ and numbers $\lambda_1 > \cdots > \lambda_{k-1} > 0$ which satisfy the above requirements. Set $V = \{y : |f(y)/y - f'_{\mathcal{I}\text{-}ap}(0)| < k^{-1}\}$. Then 0 is an \mathcal{I} -density point of V. By Lemma 1, we can find a $p > \lambda_{k-1}^{-1}$ such that

$$I_{22}^+(0,p^{-1}) \cap V \notin \mathcal{I}$$
 and $I_{21}^-(0,p^{-1}) \cap V \notin \mathcal{I}$.

Since $\bigcup_{n \in \mathbb{N}} E_n = \mathbb{R}$, so by Baire Category Theorem, there are $r_k, l_k \in \mathbb{N}$ such that $V \cap (p^{-1}/2, p^{-1}) \cap E_{r_k} \notin \mathcal{I}$ and $V \cap (-p^{-1}, -p^{-1}/2) \cap E_{l_k} \notin \mathcal{I}$. Hence we can find non-empty nowhere dense perfect sets $P_k \subset V \cap E_{r_k} \cap (p^{-1}/2, p^{-1})$

and $Q_k \subset V \cap E_{l_k} \cap (-p^{-1}, -p^{-1}/2)$. Set $\lambda_k = p^{-1}/2$. It is clear that the conditions above are satisfied.

Set $H_n = E_n \cup \bigcup_{k \in \mathbb{N}} (P_k \cup Q_k)$. Then evidently H_n is nowhere dense and perfect, and the condition (4) holds. This completes the proof.

References

- E. Lazarow, On the Baire class of *I*-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987), no. 4, 669-674.
- [2] E. Lazarow and W. Wilczyński, *I-approximate derivatives*, Rad. Mat. 5 (1989), 15-27.
- [3] R. J. O'Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), no. 2, 243-247.
- [4] G. Petruska and M. Laczkovich, Baire one functions, approximately continuous functions and derivatives, Acta Math. Hungar. 25 (1974), 189-212.
- [5] W. Poreda, E. Wagner-Bojakowska, and W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.
- [6] W. Wilczyński and V. Aversa, Some remarks on *I*-approximately continuous functions, Ricerche Mat. 33 (1984), no. 1, 63-79.