Franciszek Prus-Wiśniowski and Daniel Waterman, Department of Mathematics, Syracuse University, 215 Carnegie Hall, Syracuse, NY 13210-1150
(e-mail: wisniows@math.syr.edu, waterman@summon.syr.edu)

SMOOTHING Λ-SEQUENCES

Abstract

It is shown that for every Λ-sequence Λ there is an equivalent Λ sequence $\Gamma=\left(\gamma_{i}\right)$ such that $\lim \sup \gamma_{i+1} / \gamma_{i}=1$.

In a recent investigation concerning bounded Λ-variation as a gap Tauberian condition, a question about $\Lambda B V$ spaces arose which has not been previously considered. We quickly recapitulate the essential facts about these spaces. Let $\Lambda=\left\{\lambda_{n}\right\}$ be a nondecreasing sequence of positive real numbers such that $\sum 1 / \lambda_{n}=\infty$. A function f defined on an interval (finite or infinite) is of Λ-bounded variation if $\sum\left|f\left(b_{n}\right)-f\left(a_{n}\right)\right| / \lambda_{n}$ converges for every sequence $\left\{\left[a_{n}, b_{n}\right]\right\}$ of nonoverlapping intervals. The class of such functions is known as $\Lambda B V$. It may be shown that such functions are regulated, i.e., right and left limits exist at each point. We generally assume that $\lambda_{n} \nearrow \infty$, for otherwise, $\Lambda B V=B V[\mathrm{~W}],[\mathrm{A}]$.

In the study of the Tauberian theorem we referred to, it seemed necessary to make the assumption that $\lim \sup \lambda_{n+1} / \lambda_{n}<\infty$. A question which arises naturally is

Question 1: Given a class $\Lambda B V$ for which $\limsup \frac{\lambda_{n+1}}{\lambda_{n}}=\infty$, is there a $\Gamma=\left\{\gamma_{n}\right\}$, with limsup $\frac{\gamma_{n+1}}{\gamma_{n}}<\infty$, such that $\Gamma B V=\Lambda B V$?

When $\Gamma B V=\Lambda B V$, we shall say that the sequences Λ and Γ are equivalent.

After we answered this question affirmatively, the next to come to mind was the following question.

Key Words: Λ-variation
Mathematical Reviews subject classification: Primary 26A45
Received by the editors September 8, 1994

Question 2: For any given Λ, is there a Γ equivalent to Λ such that $\lim \frac{\gamma_{n+1}}{\gamma_{n}}=$ 1 ?

A Λ-sequence is called smooth if $\frac{\lambda_{n+1}}{\lambda_{n}} \rightarrow 1$.
Question 2 was also answered affirmatively. The method employed for Question 1 consisted of altering a subsequence of Λ to form the desired Γ. The method employed for Question 2 is an amplification of the original argument. This method, although direct, is relatively complicated.

Another question, which also has an affirmative answer, is
Question 3: Is there a computationally simple method by which one can obtain a smooth Γ equivalent to a given Λ ?

This is an appropriate time to remind the reader of a theorem of Perlman and Waterman [PW]:

Theorem Λ and Γ are equivalent if and only if there are positive constants c and c^{\prime} such that, for every n,

$$
c \leq \frac{\sum_{1}^{n} 1 / \gamma_{k}}{\sum_{1}^{n} 1 / \lambda_{k}} \leq c^{\prime}
$$

We will present our solutions for each question since there is a logical progression from one to the next and there is something to be learned about Λ-sequences from each of them. Let us now suppose that limsup $\frac{\lambda_{n+1}}{\lambda_{n}}=\infty$ and choose a finite $c>1$. Then $\frac{\lambda_{n+1}}{\lambda_{n}}>c$ for infinitely many values of n. Let $\gamma_{1}=\lambda_{1}$ and, for $n>1$, let $\gamma_{n}=\min \left\{c \gamma_{n-1}, \lambda_{n}\right\}$.

Clearly γ_{n} is nondecreasing and $\gamma_{n} \leq \lambda_{n}$ for every n. Also, $\gamma_{n} \nearrow \infty$, since $\gamma_{n}=\lambda_{n}$ for infinitely many values of n, for otherwise, there is an integer i such that $\gamma_{k}=c^{k-i} \lambda_{i}$ for $k>i$ and $\lambda_{k} \geq \gamma_{k}$, implying that $\sum \frac{1}{\lambda_{k}}$ converges.

Now

$$
\frac{\gamma_{n+1}}{\gamma_{n}}=\frac{\min \left\{c \gamma_{n}, \lambda_{n+1}\right\}}{\min \left\{c \gamma_{n-1}, \lambda_{n}\right\}}
$$

We have either

$$
\frac{\gamma_{n+1}}{\gamma_{n}}=\frac{c \gamma_{n}}{\gamma_{n}}=c
$$

or

$$
\frac{\gamma_{n+1}}{\gamma_{n}}=\frac{\lambda_{n+1}}{\gamma_{n}} \leq \frac{c \gamma_{n}}{\gamma_{n}}=c
$$

so that $\lim \sup \frac{\gamma_{n+1}}{\gamma_{n}} \leq c$.

Also, since γ_{k} is either λ_{k} or $c^{k-i} \lambda_{i}$ for some i less than k,

$$
1 \leq \frac{\sum_{1}^{n} 1 / \gamma_{k}}{\sum_{1}^{n} 1 / \lambda_{k}} \leq \frac{\sum_{i=1}^{n}\left(1 / \lambda_{i} \sum_{k=0}^{n-i} 1 / c^{k}\right)}{\sum_{1}^{n} 1 / \lambda_{i}} \leq \frac{c}{c-1}
$$

implying that Λ and Γ are equivalent.
Question 2 can be dealt with by a modification of this method. Choose $c_{n} \searrow 1$. Let $\gamma_{1}=\lambda_{1}$. Starting with $n=2$, we define numbers γ_{n} successively by $\gamma_{n}=\min \left\{\lambda_{n}, c_{1}^{k} \lambda_{1}\right\}$, where k is the least integer such that $c_{1}^{k} \lambda_{1}>\gamma_{n-1}$, until we reach an index $n_{1}>1$ such that $\gamma_{n_{1}}=\lambda_{n_{1}}$ and

$$
\frac{1}{\lambda_{n_{1}}} \cdot \frac{1}{c_{2}-1}<\frac{1}{2} .
$$

Begin anew to define γ_{n} for $n>n_{1}$ by the same method with c_{2} replacing c_{1} and $\lambda_{n_{1}}$ replacing λ_{1} until we reach an index $n_{2}>n_{1}$ such that $\gamma_{n_{2}}=\lambda_{n_{2}}$ and

$$
\frac{1}{\lambda_{n_{2}}} \cdot \frac{1}{c_{3}-1}<\frac{1}{2^{2}} .
$$

We continue in this way to define $n_{k} \nearrow$ such that for $n_{k}<n \leq n_{k+1}$ we have

$$
\gamma_{n}=\min \left\{\lambda_{n}, c_{k+1}^{j} \lambda_{n_{k}}\right\}
$$

where j is the least integer such that $c_{k+1}^{j} \lambda_{n_{k}}>\gamma_{n-1}, \gamma_{n_{k+1}}=\lambda_{n_{k+1}}$ and

$$
\frac{1}{\lambda_{n_{k+1}}} \cdot \frac{1}{c_{k+2}-1}<\frac{1}{2^{k+1}} .
$$

Suppose now that $1 \leq n<n_{1}$ and $\gamma_{n}=c_{1}^{k} \lambda_{1}$. Then $c_{1}^{k} \lambda_{1} \leq \lambda_{n}$ and k is the least integer such that $c_{1}^{k} \lambda_{1}>\gamma_{n-1}$. Then $\gamma_{n+1}=\min \left\{\lambda_{n+1}, c_{1}^{j} \lambda_{1}\right\}$, where j is the least integer such that $c_{1}^{j} \lambda_{1}>\gamma_{n}=c_{1}^{k} \lambda_{1}$, implying that $j=k+1$ and $\gamma_{n+1} / \gamma_{n} \leq c_{1}$. If $n<n_{1}$ and $\gamma_{n}=\lambda_{n}<c_{1}^{k} \lambda_{1}$ where k is the least integer such that $c_{1}^{k} \lambda_{1}>\gamma_{n-1}$, then

$$
\frac{\gamma_{n+1}}{\gamma_{n}} \leq \frac{\min \left\{\lambda_{n+1}, c_{1}^{k} \lambda_{1}\right\}}{c_{1}^{k-1} \lambda_{1}} \leq \frac{c_{1}^{k} \lambda_{1}}{c_{1}^{k-1} \lambda_{1}}=c_{1} .
$$

In an analogous fashion for $n_{k} \leq n<n_{k+1}$ we can show that

$$
\frac{\gamma_{n+1}}{\gamma_{n}} \leq c_{k+1}
$$

Finally, Γ is equivalent to Λ for

$$
\begin{aligned}
1 & \leq \frac{\sum_{1}^{n} 1 / \gamma_{k}}{\sum_{1}^{n} 1 / \lambda_{k}} \\
& \frac{\sum_{1}^{n} \frac{1}{\lambda_{k}}+\frac{1}{\lambda_{1}\left(c_{1}-1\right)}+\sum_{1}^{\infty} \frac{1}{\lambda_{n_{k}}\left(c_{n_{k+1}}-1\right)}}{\sum_{1}^{n} 1 / \lambda_{k}}=1+O\left(1 / \sum_{1}^{n} \frac{1}{\lambda_{k}}\right) .
\end{aligned}
$$

as $n \rightarrow \infty$.
In the above we formed Γ by replacing terms of Λ by smaller values. There is another method, that of interlacing two sequences, which is simpler and furnishes the answer to Question 3.

Note that if there is subsequence $\left\{\lambda_{n_{k}}\right\}$ of Λ such that $\limsup \lambda_{n_{k+1}} / \lambda_{n_{k}}=$ 1 , then $\lim \lambda_{n+1} / \lambda_{n}=1$, for

$$
\lambda_{n_{k}} \leq \lambda_{n} \leq \lambda_{n+1} \leq \lambda_{n_{k+1}} \quad \text { implies } \frac{\lambda_{n+1}}{\lambda_{n}} \leq \frac{\lambda_{n_{k+1}}}{\lambda_{n_{k}}}
$$

We shall interlace the sequences $\left\{n^{2}\right\}$ and Λ. More precisely, we place those terms of $\left\{n^{2}\right\}$ which are $\leq \lambda_{1}$ before λ_{1} and arrange them in increasing order of magnitude. Between λ_{1} and λ_{2} we place those terms n^{2} such that $\lambda_{1}<n^{2} \leq \lambda_{2}$ arranged in increasing order and we repeat this process for all pairs λ_{k} and λ_{k+1}. Let γ_{k} be the k-th term in this sequence. There is a strictly increasing sequence of positive integers $\left\{n_{k}\right\}$ such that $\gamma_{n_{k}}=\lambda_{k}$ and we always have $n_{k} \geq k$. Thus $\sum 1 / \gamma_{n}$ diverges. If $k_{n}=\min \left\{k \mid \lambda_{k}>\gamma_{n}\right\}$, then $k_{n} \leq n$, implying $\gamma_{n} \leq \lambda_{n}$. Then

$$
1 \leq \frac{\sum_{1}^{n} 1 / \gamma_{k}}{\sum_{1}^{n} 1 / \lambda_{k}} \leq \frac{\sum_{1}^{n} 1 / \lambda_{k}+\sum_{1}^{\infty} 1 / n^{2}}{\sum_{1}^{n} 1 / \lambda_{k}}=1+O\left(1 / \sum_{1}^{n} \frac{1}{\lambda_{k}}\right)
$$

as $n \rightarrow \infty$, so Γ and Λ are equivalent. Choosing $\gamma_{n_{k}}=1 / k^{2}$, we have $\lim \gamma_{n_{k+1}} / \gamma_{n_{k}}=1$, so $\lim \gamma_{n+1} / \gamma_{n}=1$.

References

[A] M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Internat. J. Math. Math Sci. 9 (1986), 223-244.
[PW] S. Perlman and D. Waterman, Some remarks on functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113-118.
[W] D. Waterman, On Λ-bounded variation, Studia Math. 57 (1976), 33-45.

