Vasile Ene, Department of Mathematics, Ovidius University, Constanta, Romania.

A GENERALIZATION OF THE BANACH ZARECKI THEOREM

Abstract

It is well known that the following theorem due to Banach and Zarecki: $AC = VB \cap (N) \cap C$, on a closed set. In [1] we showed that this theorem is no longer true if AC and VB are replaced by Foran's conditions A(2) and B(2), respectively. In the present paper, we introduce the classes AC_{∞} and VB_{∞} , which contain strictly the classes AC and VB, respectively. Then we show that $AC_{\infty} = VB_{\infty} \cap (N)$, for bounded measurable functions on a measurable set.

Definition 1 Let $F : [a, b] \to \mathbb{R}$, $P \subset [a, b]$. Let $O(F; P) = \sup\{F(y) - F(x) : x, y \in P\}$. Let $O^{\infty}(F; P) = \inf\{\sum_{i=1}^{\infty} O(F; P_i) : \bigcup_{i=1}^{\infty} P_i = P\}$.

Clearly, $O^{\infty}(F; P) \leq O(F; P)$.

Proposition 1 Let $F : [a,b] \to \mathbb{R}, P \subset [a,b]$. If F is bounded on P then $O^{\infty}(F;P) = |F(P)|$.

PROOF. We will show that $O^{\infty}(F; P) \leq |F(P)|$. For $\varepsilon > 0$, there exists an open set G, such that $F(P) \subset G = \bigcup_{i=1}^{\infty} J_i$, and $|F(P)| + \varepsilon > |G|$, where $J_i, i = 1, 2, \ldots$, are the components of G. Let $P_i = P \cap F^{-1}(J_i)$. Then $F(P) = F(\bigcup_{i=1}^{\infty} P_i) = \bigcup_{i=1}^{\infty} F(P_i) \subset \bigcup_{i=1}^{\infty} J_i$, hence $O(F; P_i) \leq |J_i|$. It follows that $O^{\infty}(F; P) \leq \sum_{i=1}^{\infty} O(F; P) \leq \sum_{i=1}^{\infty} |J_i| = |G| < |F(P)| + \varepsilon$. Since ε is arbitrary, $O^{\infty}(F; P) \leq |F(P)|$.

We will show that $|F(P)| \leq O^{\infty}(F; P)$. For $\varepsilon > 0$ there exists a sequence of sets $\{P_i\}$, i = 1, 2, ..., such that $P = \bigcup_{i=1}^{\infty} P_i$, and $O^{\infty}(F; P) + \varepsilon > \sum_{i=1}^{\infty} O(F; P_i)$. Let $J_i = [\inf(F(P_i)), \sup(F(P_i))]$. Then $F(P) = \bigcup_{i=1}^{\infty} F(P_i) \subset \bigcup_{i=1}^{\infty} J_i$, hence $|F(P)| \leq \sum_{i=1}^{\infty} |J_i| = \sum_{i=1}^{\infty} O(F; P_i) < O^{\infty}(F; P) + \varepsilon$. Since ε is arbitrary, $|F(P)| \leq O^{\infty}(F; P)$.

Key Words: absolutely continuous, bounded variation, Lusin's condition (N), Banach's condition (S)

Mathematical Reviews subject classification: Primary: 26A24 Secondary: 26A39, 26A27 Received by the editors September 6, 1994

Definition 2 Let $F : [a, b] \to \mathbb{R}, P \subset [a, b]$. F is said to be AC_{∞} on P, if for each $\varepsilon > 0$, there exists a $\delta > 0$, such that $\sum_{k=1}^{p} O^{\infty}(F; P \cap I_k) < \varepsilon$, whenever $I_k, k = 1, 2, ..., p$, is a finite set of nonoverlapping closed intervals with endpoints in P, and $\sum_{k=1}^{p} |I_k| < \delta$.

Definition 3 Let $F : [a, b] \to \mathbb{R}$, $P \subset [a, b]$, F is said to be VB_{∞} on P, if there exists a number $M \in (0, +\infty)$, such that $\sum_{k=1}^{p} O^{\infty}(F; P \cap I_k) < M$, whenever, $\{I_k\}$, is a finite set of nonoverlapping closed intervals, with endpoints in P.

Proposition 2 Let $F : [a, b] \to \mathbb{R}, P \subset [a, b]$.

- (i) $AC \subsetneq AC_{\infty}$ on P;
- (ii) $AC_{\infty} = AC$ on [a, b], for Darboux functions;

(iii)
$$VB \subsetneq VB_{\infty}$$
 on P;

(iv) $VB_{\infty} = VB$ on [a, b], for Darboux functions.

PROOF.

- (i) This follows by definitions, and the following example: let f be defined on [a, b], f(x) = 1, for x = a rational number, f(x) = 0, for $x \neq a$ rational number. Then $f \in AC_{\infty}$, and $f \notin AC$.
- (ii) Let I be a closed subinterval of [a, b]. By Proposition 1, $O^{\infty}(F; I) = |F(I)|$. Since F is Darboux, F(I) is an interval, hence |F(I)| = O(F; I). Hence $O^{\infty}(F; I) = O(F; I)$. Now the proof follows by definitions.

(iii) and (iv) follow similarly to (i) and (ii).

Remark 1 Clearly $AC \subset A(N) \subset AC_{\infty}$ and $VB \subset B(N) \subset VB_{\infty}$ on a set P, where A(N) and B(N) are Foran's conditions, introduced in [2].

Definition 4 Let $F : [a,b] \to \mathbb{R}, P \subset [a,b], F \in VB_{\infty}$ on P. We denote $V_{\infty}(F;P) = \inf\{M : M \text{ is given by the fact that } F \in VB_{\infty} \text{ on } P\}.$

Clearly, $V_{\infty}(F; P) = \sup\{\sum_{k=1}^{p} |F(P \cap I_k)| : \{I_k\}, k = 1, 2, ..., p$, is a finite set of nonoverlapping closed intervals with $I_k \cap P \neq \emptyset$.

Definition 5 Let $P \subset [a, b], F : P \to \mathbb{R}$, and let $s : \mathbb{R} \to \mathbb{R}, s(y) =$ the number of roots of the equation $F(x) = y, x \in P$. s(y) is called the Banach indicatrix. Let $K_p : [a, b] \to \mathbb{R}, K_p(x) = 1, x \in P$, and $K_p(x) = 0, x \notin p$. K_p is called the characteristic function of P.

Lemma 1 Let $P \subset [a, b]$ be a measurable set. Let $F : P \to \mathbb{R}$, be a bounded, measurable function, $m = \inf(F(P)), M = \sup(F(P))$. If F(A) is a measurable set whenever A is a measurable subset of P, then:

- (i) $\int_{m}^{M} s(y) dy = V_{\infty}(F; P) = \sup\{\sum_{k \ge 1} |F(P_{k})| : \{P_{K}\} \text{ is a finite or infinite collection of measurable, pairwise disjoint subsets of P, and <math>\bigcup_{k \ge 1} P_{k} = P\}.$
- (ii) $\Phi(X) = V_{\infty}(F; X)$ is an additive set function, where Φ is defined on all measurable subsets X of P, and $V_{\infty}(F; P) \neq +\infty$.

PROOF. (i) If $\{P_k\}$ is as above, then we have

(1)
$$\sum_{k\geq 1} K_{F(P_k)}(y) \leq s(y), \text{ for each } y \in [m, M].$$

For each natural number $n \ge 1$, let $I_1^n = [a, a + (b - a)/2^n]$, and

$$I_k^n = (a + (k-1)(b-a)/2^n, a + k(b-a)/2^n], n = 2, 3, \dots, 2^n.$$

Let $s_n(y) = \sum_{k=1}^{2^n} K_{F(P \cap I_k^n)}(y)$. But $F(P \cap I_k^n)$ is measurable by hypothesis, hence $s_n(y)$ is a positive, measurable function. Clearly $\{s_n(y)\}_n$ is increasing. We show that $s_n(y) \to s(y), n \to \infty$. Let $s^*(y) = \lim_{n \to \infty} s_n(y)$. Then $s^*(y)$ is a positive, measurable function. By $[1], s_n(y) \leq s(y)$, hence $s^*(y) \leq s(y)$. For y let q(y) be a natural number, such that $q(y) \leq s(y)$. Then there exist q(y) distinct roots $x_1 < x_2 < \ldots < x_{q(y)}$, of the equation $F(x) = y, x \in P$. Let n(y) be a natural number, such that $(b - a)/2^{n(y)} < \min\{x_{i+1} - x_i : i = 1, 2, \ldots, q(y) - 1\}$. Then there exist $k_1 < k_2 < \ldots < k_{q(y)}$, such that $x_i \in P \cap I_{k_i}^{n(y)}, i = 1, 2, \ldots, q(y)$. Hence $K_{F(P \cap I_{k_i}^{n(y)})}(y) = 1$. It follows that $s_{n(y)}(y) \geq q(y)$. If $q(y) = s(y) < +\infty$ then $q(y) = s(y) \geq s_{n(y)}(y) \geq q(y)$, hence $s_{n(y)}(y) = s(y) = q(y)$. If $s(y) = +\infty$, then q(y) can be taken arbitrarily large, hence $s^*(y) = +\infty$. It follows that $s(y) = s^*(y)$, and $\lim_{n\to\infty} s_n(y) = s(y) = s(y)$. By the Beppo-Levi Theorem,

$$\lim_{n \to \infty} \int_m^M s_n(y) \, dy = \int_m^M s(y) \, dy. \text{ By } [1], \sum_{k \ge 1} \int_m^M K_{F(P_k)}(y) \, dy \ge \int_m^M s(y) \, dy.$$

(ii) Let $\{X_i\}$ be a sequence of measurable, pairwise disjoint sets, $X_i \subset P, i = 1, 2, \ldots$ Let $X = \bigcup_{i=1}^{\infty} X_i$. Then by (i),

$$\sum_{i=1}^{\infty} V_{\infty}(F; X_i) = \sum_{i=1}^{\infty} \int_m^M (s_{/X_i})(y) \, dy$$
$$= \int_m^M \sum_{i=1}^\infty (s_{/X_i})(y) \, dy = \int_m^M (s_{/X})(y) \, dy = V_{\infty}(F; X),$$
hence $\Phi(X) = \sum_{i=1}^\infty \Phi(X_i).$

hence $\Phi(X) = \sum_{i=1}^{n} \Phi(X_i)$.

Corollary 1 Let P be a measurable set. Let $F : P \to \mathbb{R}$ be bounded measurable function. If F satisfies Lusin's condition (N) on P, then Φ is an additive set function, and Φ is AC on P.

PROOF. By a theorem of Rademacher [3, p. 354] and Lemma 1, (ii), Φ is additive. Let $X \subset P, |X| = 0$. Let $\{X_k\}, k \ge 1$, be a finite or infinite collection of measurable, pairwise disjoint subsets of X, with $X = \bigcup_{k>1} X_k$. Since $F \in (N)$ on $P, \sum_{k \ge 1} |F(X_k)| = 0$. By Lemma 1, (i), $\Phi(X) = 0$, hence $\Phi \in AC$ on P, [7, p. 30].

If $F : P \to \mathbb{R}$ and $\{P_k\}$ is a finite or infinite collection of pairwise disjoint Borel (resp. analytic) sets with $\bigcup_{k\geq 1} P_k = P$, we let $V_{\infty}(F; P) =$ $\sup\{\sum_{k\geq 1}|F(P_k)|\}.$

Corollary 2 [Iseki, [4, p. 16] and [5, p. 38-39]] Let $P \subset [a, b]$ be a Borel (respectively analytic) set, let $F : P \to \mathbb{R}$. If F is bounded and continuous on P, then the Banach indicatrix, s(y) is measurable and $\int_{\mathbb{R}} s(y) dy = V_{\infty}(F; P)$.

PROOF. The proof is similar to that of Lemma 1(i), since a continuous image of a Borel (respectively analytic) set is always a measurable set.

Remark 2 Lemma 1 and Corollary 2 may be regarded as generalizations of a well known theorem of Banach (see [7, p. 280]). In [4], the integral $\int_{m}^{M} s(y) dy$ is called the fluctuation of F on the set P.

Corollary 3 Let $P \subset [a, b]$, and let $F : P \to \mathbb{R}, F \in VB_{\infty}$ on P.

- (i) If P is a measurable set, F is a measurable function, and $F \in (N)$ on P then $F \in T_1$ on P.
- (ii) If P is a Borel (respectively analytic) set, and F is continuous on P, then $F \in T_1$ on P.

PROOF. (i) follows by Lemma 1 and the definition of Banach's condition T_1 (ii) follows by Corollary 2 and the definition of T_1 . **Definition 6** Let $P \subset [a, b], F : P \to \mathbb{R}$. F fulfils Banach's condition S on P if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that $|F(Z)| < \varepsilon$, whenever $Z \subset P$ and $|Z| < \delta$. If in addition Z is supposed to be a compact set, then we obtain condition wS (weak S) on P.

Definition 7 Let $P \subset [a, b], F : P \to \mathbb{R}$. F is said to be S_0 on P, if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\sum_{i=1}^{n} |F(P_i)| < \varepsilon$, whenever P_i , i = 1, 2, ..., n, are measurable, pairwise disjoint subsets of P, with $\sum_{i=1}^{n} |P_i| < \delta$. In addition P_i , i = 1, 2, ..., n, are supposed to be a compact set, we obtain condition wS_0 on P.

Proposition 3 Let $F[a, b] \rightarrow \mathbb{R}, P \subset [a, b]$. Then we have:

- (i) $AC_{\infty} \subset S \subset (N)$ on P;
- (ii) $S_0 \subset S \subset wS$ on P;
- (iii) $S_0 \subset wS_0 \subset wS$ on P;
- (iv) If P is measurable, then $S = wS \cap (N)$ on P;
- (v) If P is of F_{σ} type then $wS \subset (N)$, hence S = wS on P.

PROOF.

- (i) Let ε > 0, and let δ be given by the fact that F ∈ AC_∞ on P. Then there exists {I_k}_k, a sequence of non-overlapping closed intervals, such that E ⊂ ∪_{k=1}[∞]I_k and ∑_{k=1}[∞]O[∞](F; E ∩ I_k) < ε. By Proposition 1, |F(E ∩ I_k)| = ∑_{k=1}[∞]O[∞](F; E ∩ I_k) < ε. Hence F ∈ S on P. For S ⊂ (N), see [7].
- (ii) and (iii) follow from the definitions.
- (iv) $S \subset wS \cap (N)$ on P follows by (i) and (ii). Let $F \in wS \cap (N)$ on P. Let $Z \subset P$, Z-measurable, $|Z| < \delta$. We have two situations: 1) Z is a set of F_{σ} -type. Then there exists $Q_1 \subset Q_2 \subset \ldots \subset Q_n \subset \ldots$, compact sets, such that $Z = \bigcup_{i=1}^{\infty} Q_i$. But $F(Z) = F(\bigcup_{i=1}^{\infty} Q_i) = \bigcup_{i=1}^{\infty} F(Q_i)$. Since $\{F(Q_i)\}_i$, is an increasing sequence of sets, it follows that $|F(Z)| = \lim_{n \to \infty} |F(Q_i)|$. But $|Q_i| < \delta$, hence $|F(Q_i)| \leq \varepsilon$, $i = 1, 2, \ldots$. Then $|F(Z)| \leq \varepsilon$, hence $F \in S$ on P. 2) Z is not a set of F_{σ} -type. Then there exists $A \subset Z$, such that A is a set of F_{σ} -type, and |Z A| = 0. We have $|F(Z)| \leq |F(A)| + |F(Z A)|$. But $|F(A)| \leq \varepsilon$ (see 1), and |F(Z A)| = 0 (since $F \in (N)$). Hence, $|F(Z)| \leq \varepsilon$ and $F \in S$ on P.

(v) Let $Z \subset P$, |Z| = 0. For $\varepsilon > 0$, let $\delta > 0$ be given by the fact that $F \in wS$ on P. Then there exists an open set Q, such that $Q \supset Z$, $|Q| < \delta$. It follows that $Z \subset Q \cap P$ and $Q \cap P$ is of F_{σ} -type. Similarly to (iv) 1, it follows that $|F(Z)| \leq |F(Q \cap P)| < \varepsilon$, hence |F(Z)| = 0, and $F \in (N)$ on P.

Theorem 1 Let $F : [a, b] \to \mathbb{R}$, F a bounded and measurable function. Let P be a measurable subset of [a, b]. The following assertations are equivalent:

- (1) $F \in AC_{\infty}$ on P;
- (ii) $F \in wS_0 \cap (N)$ on P;
- (iii) $F \in S_0$ on P;
- (iv) $F \in VB_{\infty} \cap (N)$ on P.

PROOF.

- (i) \Rightarrow (ii) Let $\varepsilon > 0$, and let δ be given by the fact that $F \in AC_{\infty}$ on P. Let $\{P_k\}, k = 1, 2, ..., n$, be a finite set of pairwise disjoint, compact subsets of P, such that $\sum_{k=1}^{n} |P_k| < \delta/2$. For each P_k , there exists a finite set of non-overlapping closed intervals $I_{k,j}, j = 1, 2, ..., p$, with endpoints in P_k , such that $P_k \subset \bigcup_{k=1}^n \bigcup_{j=1}^{p} I_{k,j}$ and $\sum_{k=1}^n \sum_{j=1}^p |I_{k,j}| < \delta$. Then $\sum_{k=1}^n |F(P_k)| \leq \sum_{k=1}^n \sum_{j=1}^p |F(I_{k,j} \cap P)| < \varepsilon$, hence $F \in wS_0$ on P. By proposition 3 (i), $F \in (N)$ on P.
- (ii) \Rightarrow (iii). The proof is similar to that of Iseki (see[4], Theorem 14). Let $\varepsilon > 0$. For $\varepsilon/2$, let $\delta > 0$ be given by the fact that $F \in wS$ on P. Let Q be a measurable subset of P. Then there exists a set of F_{σ} -type A, such that $A \subset Q$ and |Q A| = 0. Since $F \in (N)$ on P, |F(Q A)| = 0. By Proposition 3 (iii), $F \in wS$ on P. Hence $|F(Q)| = |F(A) \cup F(Q A)| \leq |F(A)| + |F(Q A)| = |F(A)|$. Since $A \subset Q$, it follows that |F(Q)| = |F(A)|. The set A can be expressed as the limit of an increasing, infinite sequence of compact sets. It follows that, for $\varepsilon > 0$ there exists $A_{\varepsilon} \subset A$, A_{ε} a compact set, such that $|F(Q)| = |F(A)| < |F(A_{\varepsilon})| + \varepsilon$. Let $\{P_i\}$, i = 1, 2, ..., n, be a finite set of measurable, pairwise disjoint subsets of P, such that $|F(P_i)| < \delta$. Then, as above, there exists a compact set $Q_i \subset P_i$, such that $|F(P_i)| \leq |F(Q_i)| + \varepsilon/2n$, i = 1, 2, ..., n. It follows that $\sum_{i=1}^n |P_i| < \delta$ and $\sum_{i=1}^n |F(Q_i)| + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon$, hence $F \in S_0$ on P.

- (iii) \Rightarrow (i). For $\varepsilon > 0$, let $\delta > 0$, be given by the fact that $F \in S_0$ on P. Let $\{I_k\}, k = 1, 2, ..., n$, be a finite set of nonoverlapping closed intervals, such that $P \cap I_k \neq \phi$, and $\sum_{k=1}^n |I_k| < \delta$. Let $P_k = P \cap I_k$. Then $\sum_{k=1}^n |P_k|, \delta$, and $\sum_{k=1}^n |F(P_k)|, \varepsilon$, hence $F \in AC_\infty$ on P.
- (iii) \Rightarrow (iv). Let $F \in S_0$ on P. Then, by Proposition 3 (i),(ii), $F \in (N)$ on P. For $\varepsilon = 1$, let $\delta > 0$, be given by the fact that $F \in S_0$ on P. Let $\{P_k\}$, k = 1, 2, ..., p be a finite set of measurable, pairwise disjoint subsets of $P, P = \bigcup_{k=1}^{p} P_k$ and diam $(P_k) < \delta, k = 1, 2, ..., p$. By Lemma 1 (ii),(i), $\Phi(P) = \sum_{k=1}^{p} \Phi(P_k) \le p$, hence $F \in VB_{\infty}$ on P.
- (iv) \Rightarrow (iii). Let $F \in VB_{\infty} \cap (N)$ on P. By a well-known theorem of Saks ([7], p. 31), it follows that, for each $\varepsilon > 0$, there exists a $\delta > 0$, such that, for each measurable set $X \subset P$, $\Phi(X) < \varepsilon$, whenever $|X| < \delta$. Let $\{P_k\}, k = 1, 2, ..., p$, be a finite collection of measurable, pairwise disjoint subsets of P, with $\sum_{k=1}^{p} |(P_k)| < \delta$. Then $\sum_{k=1}^{p} |F(P_k)| \le |\sum_{k=1}^{p} \Phi(P_k) = \Phi(\bigcup_{k=1}^{p} P_k) < \varepsilon$, hence $F \in S_0$ on P.

Remark 3 a) From the proof of Theorem 1, it follows that $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$ without asking F to be measurable. b) In [1], we showed that there exists a continuous function F, which is B(2) on a perfect set P, $F \in (N)$ on P, $F \notin A(N)$ on P, N = 1, 2, ... That's why $(i) \Leftrightarrow (iv)$ in Theorem 1 is so surprising.

Corollary 4 Let $F[a, b] \rightarrow \mathbb{R}, P \subset [a, b]$.

- (i) If P is a set of F_{σ} -type then $AC_{\infty} = wS_0 = S_0$ on P;
- (ii) $AC = AC_{\infty} = S_0 = wS_0$ on [a, b], for continuous functions;
- (iii) $S_0 \subsetneq S \subsetneq (N)$ and $wS_0 \subsetneq wS$ on [a, b], for continuous functions; wS on [a, b], for continuous functions;
- (iv) $VB \cap (N) = VB_{\infty} \cap (N) = AC_{\infty} = AC$ on [a, b], for Darboux functions.

PROOF. (i) See Proposition 3(iii), (iv) and Theorem 1(i), (ii), (iii). (ii) See (i) and Proposition 2(ii). (iii) By [7] $AC \subsetneq S$, for continuous functions on [a, b]. Now the proof follows by (ii) and Proposition 3(ii), (iii), (i). (iv) See Proposition 2(ii), (iv) and Theorem 1.

Remark 4 Corollary 4(iv) is in fact the Banach-Zarecki theorem ([7]).

References

- V. Ene, A study of Foran's conditions A(N) and B(N) and his class 3, Real Anal. Exch., 10 (1984-85), 194-211.
- [2] J. Foran, An extension of the Denjoy integral, Proc. Amer. Math Soc., 49 (1975), 359-365.
- [3] J. Foran, Fundamentals of real analysis, Marcel Dekker Inc., New York, (1985).
- [4] K. Iseki, On the normal integration, Nat. Sci. Rep., 37, (1986), 1-34.
- [5] K. Iseki, On two theorems of Nina Bary type, Nat. Sci. Rep., 38, (1987), 33-98.
- [6] C. Kuratowski, Topologie I, Warszawa-Lwów, (1933).
- [7] S. Saks Theory of the intrgral, 2nd.rev.ed. Monografie Math, 8, Warsaw, (1937).