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 ON THE MAXIMAL FAMILIES FOR THE

 CLASS OF STRONGLY

 QUASI-CONTINUOUS FUNCTIONS

 Abstract

 It is investigated the maximal families (additive, multiplicative, lat-
 tice and with respect to the composition) for the class of strongly qua-
 sicontinuous functions.

 Let R be the set of all reals and let /ic (//) denote the outer Lebesgue
 measure (the Lebesgue measure) in R. Denote by

 du(A , x) = limsup/ie(j4 fi (x - A, x + A))/2A
 h-*0

 (¿/(A, x) = liminf/ic(i4 fi (x - A, x + A))/2A)
 h-tO

 the upper (lower) density of a set A C R at a point x. A point x £ R is called
 a density point of a set A C R if there exists a measurable (in the sense of
 Lebesgue) set B C A such that di(B,x) = 1. The family
 Td = {A C R; A is measurable and every point x G A is a density point of A}
 is a topology called the density topology [1]. Denote by int(A) the interior of
 the set A. The family

 Tae = {A e Td ; n{A - int(A)) = 0}

 is also a topology [4].
 A function / (from R into R) is called 7^e- continuous ( Td - continuous

 or approximately continuous) at a point x if it is continuous at x as the
 application from (R, Tae ) (from (7£,7d)) into (R,7ļ), where 71 denotes the
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 Euclidean topology in M. A function / is 7^e- continuous (everywhere on
 R) if and only if it is 7¿- continuous (everywhere) and almost everywhere
 (relative to /1) continuous [4]. A function / is said to be strongly quasi-
 continuous (in short s.q.c.) at a point x if for every set A £ Td containing x
 and for every positive real 77 there is an open interval I such that I fi A ^ 0
 and I f(t) - /(x)| < 77 for all t G A H I [2].
 A function / : M - ► K is s.q.c. at a point 1 Gl whenever there is an

 open set U such that du(U, x) > 0 and the restricted function f/(U U {x}) is
 continuous at x [3]. Now, let :

 - C = {/; / is continuous };

 - Cae = {/; / is Tae- Continuous };

 - Qs = {/;/ is s.q.c.};

 - Maxadd(Qs) = {f -,f + g € Qs for every g e Q,};

 - Maxmuit(Qs) = {f-,fg e Qs; for every </€<?,};

 - Maxmax(Qs) = {/; max(/, 17) € Q¡ for every g € <?,};

 - M axmin (Qs ) = { f;min(f,g ) € Qs for every g € <3»};

 - Maxcomp{Q,) = {f,f °g €Qs for every g €QS}.

 Remark 1 Since all constant functions and the function f(x) = x for x € M
 belong to Qs , we have immediately

 MaXadd{Qs) U M aXmult{Qs) U M aXmax (Qs) U

 UM axmin [Qs ) U Afaxcomp(Qs) G Qs-

 Remark 2 Since the intersection of an open set A having at a point x the
 density 1 and an open set B having at x positive upper density is an open set
 having at x positive upper density, from the elementary properties of continu-
 ous functions it follows the followig inclusions :

 ~ Cae C! Maxadd(Qs) ^ MaXmuit (Qs ) ft M ax max (Qs) ^ M axmin(Q s) ;

 ~ C C MaxCOmp{Qs )•

 Theorem 1 The equality

 Maxadd{Qs) = Cae

 is true .
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 Proof. By Remark 2 we have the inclusion Cae C Maxadd(Qs)> For the
 proof of the inclusion Maxadd(Qs) C Cae fix a function / G Maxadd(Qs)- By
 Remark 1 the function / G Qs- If / is not in Cae then there are a point x G M
 and a positive number rj such that the closure cl({t] 'f(t) - /(x)| > 77}) of the
 set {ť; I f(t) - f(x) ļ > 77} has positive upper density at a point x. We can
 assume that the closure

 cl{{ť,f(t) > f{x)+T]})

 has positive upper density at a point x. Since / belonging to Qs is almost
 everywhere continuous [2, 3], we obtain

 f(t) > f{x) + T)}) - {ť, f(t) > f(x) + 77}) = 0

 and consequently,

 du(int({t ; f(t) > f(x) + 77/2}), x) > 0.

 Thus there is a sequence of disjoint closed intervals In = [anibn] C {*;/(*) >
 /(x) 4- Ty/2}, n = 1,2,..., such that:

 (1) x is not in In for n = 1,2,...;

 (2) / is continuous at all points an, 6n, n = 1,2,...;

 (3) limn- too ûn - limn-^oo = X;

 (4) d*(Un'n,x)>0.

 Put

 , . _ / -/(x) + 77/2 ¿/ (ť = x) V (t G In, n = 1, 2, . . .)
 ^ ' _ ļ -f(t) otherwise .

 Then 0 G Q,, /(x) + ý(x) = 77/2, /(*) + ý(ť) > 77 for t G /n, n = 1, 2, . . .
 and f(t) + </(*) = 0 otherwise on K. So, / + g is not in Qs and consequently
 / is not in MaXadd{Qs)- This contradiction finishes the proof.

 Theorem 2 The equalities

 MaXmax{Qs) - -^aXmtn(Q5) = Cae

 are true.
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 Proof. By Remark 2 we have

 Cae C McLxmax(Qs ) D M axm¡n (Qs ) •

 We will show only that Maxmax(Qs) C Cac, because the proof of the inclusion
 Maxmin(Qs) C Cae is similar. Let / £ Maxmax{Qs) be a function. By
 Remark 1 the function / € Qs If / is not in Cae then there are a point x and
 a positive number 77 such that

 du(cl{{t' |/(ť) - f(x) I > 77}), 1) > 0.

 If

 du(cl{{t ; /(ť) > /(1) + »;}), x) > 0,

 as in the proof of Theorem 1, there are disjoint closed intervals

 In = K, ¿n] C {<; f{t) > f{x) + Tj/2},

 such that conditions (1) - (4) from the proof of Theorem 1 are satisfied. Let

 q(t' _ / fi*)-*) if (( = i)V(te/„,n=U,...,)
 ' f{x) + V otherwise .

 Then g £ Qs , max(/(x),^(x)) = f(x) and ma x(f(t)1g(t)) > f(x) + tj/2 for
 t ^ x. So, max(/, <7) is not in Qs and consequently, / is not in Maxmax{Qs)-
 Thus

 du{cl{{t; f{t) < /(x) - 77}), x) > 0

 and there are disjoint closed intervals In = [an,6n] C < f(x) -
 77/2}, n = 1,2,..., which satisfy conditions (l)-(4) from the proof of The-
 orem 1. Let the function g be defined the same as above. Then g £ Qs,
 max(/(x), <7(x)) = /(x), ma x(/(ť),0(ť)) < /(x) - 77/2 for t elnin= 1,2,...,
 and msx(f(t)ig(t)) > /(x) + 77 otherwise on M. So, ma x(/, <7) is not in QSi and
 consequently / is not in Maxmax(Q$). This contradiction finishes the proof.

 Theorem 3 The equality

 M (ixcornp (Q s ) - - C

 is true.

 Proof. By Remark 2 we have the inclusion C C Maxcornp(Qs). Suppose
 that a function / is not continuous at a point y. Then there is a sequence of
 points yn y, n = 1,2,..., such that lim^oo yn = y and limn-»oo fiVn) Î
 f(y). Let In = [an, 6n], n = 1,2,..., be disjoint closed intervals such that
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 - limn- too an = lim,, ->•00 bn - Oj

 - anbn >0forn= 1,2,...,;

 - áu(Un^n,0)>0.

 Put

 {Vn t/i y otherwise. if if X X = e In,n 0 = 1,2, . . .,
 y if X = 0
 t/i otherwise.

 Then g G Qs and / o g is not in QSi since / o g is not s.q.c. at x = 0. So,
 Maxcomp(<35) C C, and the proof is completed.

 Remark 3 If a function f G Qs is not Tae- continuous at a point x G M at
 which f(x) ^ 0 then there is a function g G Qs such that fg is not in Qs.

 Proof. The same as in the proof of Theorem 1 we prove that there exist a
 positive real rj and disjoint closed intervals In = [an,6„] C {ż; |/(ż) - /(z)| >
 77/2} which satisfy conditions (l)-(4) from the proof of Theorem 1. Put

 (łfi) = / 1 (t = x)V (t€ In,n= 1,2,...,)
 (łfi) * ' = ' 0 otherwise.

 Then g € Qs and fg is not in QSi since fg is not s.q.c. at x. This completes
 the proof.

 Remark 4 Let f G Qs be a function and let x G M be a point such that
 /(x) = 0. If f(t) = 0},x) > 0 then for every function g G Qs the
 product fg is s.q.c. at x.

 Proof. Since the functions /,<7 are almost everywhere continuous, the
 product fg is the same. Consequently, if A = {t]f(t)g(t) = 0 and f,g are
 continuous at t} then du(A , x) > 0 and for every rj > 0 we have

 du(int({t ; 'f(t)g(t)' < 77}), x) > du(A , x) > 0.

 So, the product fg is s.q.c. at x and the proof is completed.
 To prove the following result, Remark 5, we will apply the following:

 Lemma 1 Let A C M be a closed set and let x G A be a point such that
 du(A,x) = 0. Then there is a sequence of disjoint closed intervals In =
 [anibn] C (x - 2, x -I- 2), n = 1,2,..., such that:

 - limn_ ».00 an - limn_ >00 bn - X]
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 - ¿tí (Un ' x) =

 - (A - {x}) n [x - 1,X + 1] C Un int(In)-

 Proof. Fix a positive integer k and observe that the sets

 Bk = [x + l/(fc + 1) , x + l/fc] fi j4

 and

 Ck = [x- l/M - l/(ifc+ i)]n>l

 are compact. Let Uk, V* be open sets such that

 - Bk C Uk C [x + {k + I)"1 - (4 (k + I))"3, x + fc"1 + (4Ar)-3];

 - Ck C 14 C [x - k -1 - (4fc)"3, x - (fc + I)"1 + (4(* + I))"3];

 - fx(Uk - Bk) < p{Bk) + k'3;

 - ß{Vk -Ck)< ß(Ck) + k-3.

 Since the sets Bk, Ck are compact, there are finite families of disjoint closed
 intervals

 {Kiik;i= 1,..., ¿(fc)}

 and

 {Lj.kJ =
 such that

 i(k)

 Bk C (J int(Ki,k) C Uk
 1 = 1

 and
 m

 Ck C [J int(Ljtk) C Vk-
 i=i

 Then every enumeration ( In)n of all connected components of the union

 t'(fc) j(k)

 U(U u U
 /: 1=1 i=l

 such that li fi Ij = 0 for i ^ j , z', 7 = 1, 2, . . satisfies all required conditions.
 So, the proof is completed.
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 Remark 5 Suppose that a function f £ Qs is not Ta*- continuous at a point
 X at which f(x) = 0. If

 du({t;f(i) = 0},x) = 0

 then there is a function g € Qs such that the product fg is not in Qs .

 Proof. Since / is almost everywhere continuous, we obtain

 A*(c/({ť; f(t) = 0}) - {ť; f{t) = 0}) = 0

 and

 du(cl({ť, f(t) = 0}),*) = 0.-

 By Lemma 1 there are disjoint closed intervals In = [anibn] C (x - 2, x +
 2) - {x}, n = 1,2,..., such that

 - limn- ».oo an - limn- foo - x'

 - [x - l, x + l] n cl({t' f(t) = o}) - {x} c Un

 - du(lUn,*) = 0.

 Since the function / is not Tae- continuous at x, there are a positive real
 7] and disjoint closed intervals Jn = [cn, dn] C ({ t ; ' f{t)' > rj/ 2} fl (x - 1, x +
 !)) - U A such that linin^ooCn = limn^oo dn = x and dw((jn ^n,«) > 0.
 Moreover, we can assume that / is continuous at all points anìbn,cnìdnì n =
 1,2,....

 Put

 ( 7) if (t = x) V (t e Jn,n > 1)
 g(t) = < 1 if (t < x - 1) V (t > x + 1) V (t e In , n > 1)

 [ 1 /f{t) otherwise.

 It is obvious that the function g is s.q.c. at x and at every point t 6
 (Jn(/n U Jn) U (- oo, x - 1] U [x -ł- 1, oo). By elementary method we can prove
 that it is also s.q.c. at each point t at which g(t) = 1 / f{t). So, g € Qs-
 But the product fg is not s.q.c. at x, since f(x)g(x) = 0, f(t)g(t) = 1 for
 t € (i-2,i + 2)-(J1?(/nUJ„)-{i}, l/(*M*)l > »?2/2 for t eJ„,n> 1, and
 du (Un ^n,í) = 0. This finishes the proof.

 From Remarks 1 - 5 it follows immediately:

 Theorem 4 A function f E Maxmuu(Qs) if and only if it is in Qs and
 satisfies the following condition :

 (F) tf f 25 notTae - continuous at a point x then f(x) = 0 and du({t]f(t) =
 0}, x) > 0.
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