Zbigniew Grande, Mathematics Department, Pedagogical University, Plac Słowiański 9, 65-069 Zielona Góra, Poland

ON THE MAXIMAL FAMILIES FOR THE CLASS OF STRONGLY QUASI-CONTINUOUS FUNCTIONS

Abstract

It is investigated the maximal families (additive, multiplicative, lattice and with respect to the composition) for the class of strongly quasicontinuous functions.

Let \mathbb{R} be the set of all reals and let $\mu_{e}(\mu)$ denote the outer Lebesgue measure (the Lebesgue measure) in \mathbb{R}. Denote by

$$
\begin{aligned}
& d_{u}(A, x)=\limsup _{h \rightarrow 0} \mu_{e}(A \cap(x-h, x+h)) / 2 h \\
& \left(d_{l}(A, x)=\liminf _{h \rightarrow 0} \mu_{e}(A \cap(x-h, x+h)) / 2 h\right)
\end{aligned}
$$

the upper (lower) density of a set $A \subset \mathbb{R}$ at a point x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_{l}(B, x)=1$. The family
$\mathcal{T}_{d}=\{A \subset \mathbb{R} ; A$ is measurable and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1]. Denote by $\operatorname{int}(A)$ the interior of the set A. The family

$$
\mathcal{T}_{a e}=\left\{A \in \mathcal{T}_{d} ; \mu(A-\operatorname{int}(A))=0\right\}
$$

is also a topology [4].
A function f (from \mathbb{R} into \mathbb{R}) is called $\mathcal{T}_{a e}-$ continuous (\mathcal{T}_{d} - continuous or approximately continuous) at a point x if it is continuous at x as the application from $\left(\mathbb{R}, \mathcal{T}_{a e}\right)$ (from $\left(\mathcal{R}, \mathcal{T}_{d}\right)$) into $\left(\mathbb{R}, \mathcal{T}_{e}\right)$, where \mathcal{T}_{e} denotes the

[^0]Euclidean topology in \mathbb{R}. A function f is $\mathcal{T}_{a e}$ - continuous (everywhere on \mathbb{R}) if and only if it is \mathcal{T}_{d} - continuous (everywhere) and almost everywhere (relative to μ) continuous [4]. A function f is said to be strongly quasicontinuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_{d}$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t)-f(x)|<\eta$ for all $t \in A \cap I$ [2].

A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is s.q.c. at a point $x \in \mathbb{R}$ whenever there is an open set U such that $d_{u}(U, x)>0$ and the restricted function $f /(U \cup\{x\})$ is continuous at $x[3]$. Now, let:
$-C=\{f ; f$ is continuous $\} ;$

- $C_{a e}=\left\{f ; f\right.$ is $\mathcal{T}_{a e}-$ continuous $\} ;$
$-Q_{s}=\{f ; f$ is s.q.c. $\} ;$
- $\operatorname{Max}_{\text {add }}\left(Q_{s}\right)=\left\{f ; f+g \in Q_{s}\right.$ for every $\left.g \in Q_{s}\right\} ;$
- $\operatorname{Max}_{\text {mult }}\left(Q_{s}\right)=\left\{f ; f g \in Q_{s} ;\right.$ for every $\left.g \in Q_{s}\right\} ;$
- $\operatorname{Max}_{\max }\left(Q_{s}\right)=\left\{f ; \max (f, g) \in Q_{s}\right.$ for every $\left.g \in Q_{s}\right\} ;$
- $\operatorname{Max}_{\min }\left(Q_{s}\right)=\left\{f ; \min (f, g) \in Q_{s}\right.$ for every $\left.g \in Q_{s}\right\} ;$
- $\operatorname{Max}_{\text {comp }}\left(Q_{s}\right)=\left\{f ; f \circ g \in Q_{s}\right.$ for every $\left.g \in Q_{s}\right\}$.

Remark 1 Since all constant functions and the function $f(x)=x$ for $x \in \mathbb{R}$ belong to Q_{s}, we have immediately

$$
\begin{gathered}
\operatorname{Max}_{a d d}\left(Q_{s}\right) \cup M a x_{\text {mult }}\left(Q_{s}\right) \cup \operatorname{Max}_{\max }\left(Q_{s}\right) \cup \\
\cup M a x_{\min }\left(Q_{s}\right) \cup M a x_{\text {comp }}\left(Q_{s}\right) \subset Q_{s} .
\end{gathered}
$$

Remark 2 Since the intersection of an open set A having at a point x the density 1 and an open set B having at x positive upper density is an open set having at x positive upper density, from the elementary properties of continuous functions it follows the followig inclusions:
$-C_{a e} \subset \operatorname{Max}_{a d d}\left(Q_{s}\right) \cap \operatorname{Max}_{\operatorname{mult}}\left(Q_{s}\right) \cap \operatorname{Max} x_{\max }\left(Q_{s}\right) \cap M a x_{\min }\left(Q_{s}\right) ;$
$-C \subset \operatorname{Max}_{\text {comp }}\left(Q_{s}\right)$.
Theorem 1 The equality

$$
\operatorname{Max}_{a d d}\left(Q_{s}\right)=C_{a e}
$$

is true.

Proof. By Remark 2 we have the inclusion $C_{a e} \subset \operatorname{Max}_{a d d}\left(Q_{s}\right)$. For the proof of the inclusion $M a x_{a d d}\left(Q_{s}\right) \subset C_{a e}$ fix a function $f \in M a x_{a d d}\left(Q_{s}\right)$. By Remark 1 the function $f \in Q_{s}$. If f is not in $C_{a e}$ then there are a point $x \in \mathbb{R}$ and a positive number η such that the closure $c l(\{t ;|f(t)-f(x)|>\eta\})$ of the set $\{t ;|f(t)-f(x)|>\eta\}$ has positive upper density at a point x. We can assume that the closure

$$
c l(\{t ; f(t)>f(x)+\eta\})
$$

has positive upper density at a point x. Since f belonging to Q_{s} is almost everywhere continuous [2, 3], we obtain

$$
\mu(c l(\{t ; f(t)>f(x)+\eta\})-\{t ; f(t) \geq f(x)+\eta\})=0
$$

and consequently,

$$
d_{u}(\operatorname{int}(\{t ; f(t)>f(x)+\eta / 2\}), x)>0 .
$$

Thus there is a sequence of disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)>$ $f(x)+\eta / 2\}, n=1,2, \ldots$, such that:
(1) x is not in I_{n} for $n=1,2, \ldots$;
(2) f is continuous at all points $a_{n}, b_{n}, n=1,2, \ldots$;
(3) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x$;
(4) $d_{u}\left(\bigcup_{n} I_{n}, x\right)>0$.

Put

$$
g(t)=\left\{\begin{array}{cc}
-f(x)+\eta / 2 & \text { if } \\
-f(t) & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots\right)\right.
$$

Then $g \in Q_{s}, f(x)+g(x)=\eta / 2, f(t)+g(t) \geq \eta$ for $t \in I_{n}, n=1,2, \ldots$ and $f(t)+g(t)=0$ otherwise on \mathbb{R}. So, $f+g$ is not in Q_{s} and consequently f is not in $\operatorname{Max}_{\text {add }}\left(Q_{s}\right)$. This contradiction finishes the proof.

Theorem 2 The equalities

$$
\operatorname{Max}_{\max }\left(Q_{s}\right)=\operatorname{Max}_{\min }\left(Q_{s}\right)=C_{a e}
$$

are true.

Proof. By Remark 2 we have

$$
C_{a e} \subset \operatorname{Max}_{\max }\left(Q_{s}\right) \cap \operatorname{Max}_{\min }\left(Q_{s}\right)
$$

We will show only that $\operatorname{Max}_{\max }\left(Q_{s}\right) \subset C_{a e}$, because the proof of the inclusion $\operatorname{Max}_{\min }\left(Q_{s}\right) \subset C_{a e}$ is similar. Let $f \in \operatorname{Max}_{\max }\left(Q_{s}\right)$ be a function. By Remark 1 the function $f \in Q_{s}$. If f is not in $C_{a e}$ then there are a point x and a positive number η such that

$$
d_{u}(c l(\{t ;|f(t)-f(x)|>\eta\}), x)>0
$$

If

$$
d_{u}(c l(\{t ; f(t)>f(x)+\eta\}), x)>0
$$

as in the proof of Theorem 1, there are disjoint closed intervals

$$
I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)>f(x)+\eta / 2\}
$$

such that conditions (1) - (4) from the proof of Theorem 1 are satisfied. Let

$$
g(t)=\left\{\begin{array}{cc}
f(x)-\eta & \text { if } \\
f(x)+\eta & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots,\right)\right.
$$

Then $g \in Q_{s}, \max (f(x), g(x))=f(x)$ and $\max (f(t), g(t)) \geq f(x)+\eta / 2$ for $t \neq x$. So, $\max (f, g)$ is not in Q_{s} and consequently, f is not in $\operatorname{Max}_{\max }\left(Q_{s}\right)$. Thus

$$
d_{u}(c l(\{t ; f(t)<f(x)-\eta\}), x)>0
$$

and there are disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ; f(t)<f(x)-$ $\eta / 2\}, n=1,2, \ldots$, which satisfy conditions (1)-(4) from the proof of Theorem 1. Let the function g be defined the same as above. Then $g \in Q_{s}$, $\max (f(x), g(x))=f(x), \max (f(t), g(t)) \leq f(x)-\eta / 2$ for $t \in I_{n}, n=1,2, \ldots$, and $\max (f(t), g(t)) \geq f(x)+\eta$ otherwise on \mathbb{R}. So, $\max (f, g)$ is not in Q_{s}, and consequently f is not in $\operatorname{Max}_{\max }\left(Q_{s}\right)$. This contradiction finishes the proof.

Theorem 3 The equality

$$
\operatorname{Max}_{\text {comp }}\left(Q_{s}\right)=C
$$

is true.
Proof. By Remark 2 we have the inclusion $C \subset \operatorname{Max}_{\text {comp }}\left(Q_{s}\right)$. Suppose that a function f is not continuous at a point y. Then there is a sequence of points $y_{n} \neq y, n=1,2, \ldots$, such that $\lim _{n \rightarrow \infty} y_{n}=y$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right) \neq$ $f(y)$. Let $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$, be disjoint closed intervals such that
$-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0 ;$
$-a_{n} b_{n}>0$ for $n=1,2, \ldots, ;$
$-d_{u}\left(\bigcup_{n} I_{n}, 0\right)>0$.
Put

$$
g(x)=\left\{\begin{array}{ccl}
y_{n} & \text { if } & x \in I_{n}, n=1,2, \ldots, \\
y & \text { if } & x=0 \\
y_{1} & \text { otherwise }
\end{array}\right.
$$

Then $g \in Q_{s}$ and $f \circ g$ is not in Q_{s}, since $f \circ g$ is not s.q.c. at $x=0$. So, $M a x_{c o m p}\left(Q_{s}\right) \subset C$, and the proof is completed.

Remark 3 If a function $f \in Q_{s}$ is not $\mathcal{T}_{a e}-$ continuous at a point $x \in \mathbb{R}$ at which $f(x) \neq 0$ then there is a function $g \in Q_{s}$ such that $f g$ is not in Q_{s}.

Proof. The same as in the proof of Theorem 1 we prove that there exist a positive real η and disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset\{t ;|f(t)-f(x)|>$ $\eta / 2\}$ which satisfy conditions (1)-(4) from the proof of Theorem 1. Put

$$
g(t)=\left\{\begin{array}{cc}
1 & \text { if } \\
0 & \text { otherwise. }
\end{array} \quad(t=x) \vee\left(t \in I_{n}, n=1,2, \ldots,\right)\right.
$$

Then $g \in Q_{s}$ and $f g$ is not in Q_{s}, since $f g$ is not s.q.c. at x. This completes the proof.

Remark 4 Let $f \in Q_{s}$ be a function and let $x \in \mathbb{R}$ be a point such that $f(x)=0$. If $d_{u}(\{t ; f(t)=0\}, x)>0$ then for every function $g \in Q_{s}$ the product fg is s.q.c. at x.

Proof. Since the functions f, g are almost everywhere continuous, the product $f g$ is the same. Consequently, if $A=\{t ; f(t) g(t)=0$ and f, g are continuous at $t\}$ then $d_{u}(A, x)>0$ and for every $\eta>0$ we have

$$
d_{u}(\operatorname{int}(\{t ;|f(t) g(t)|<\eta\}), x) \geq d_{u}(A, x)>0 .
$$

So, the product $f g$ is s.q.c. at x and the proof is completed.
To prove the following result, Remark 5, we will apply the following:
Lemma 1 Let $A \subset \mathbb{R}$ be a closed set and let $x \in A$ be a point such that $d_{u}(A, x)=0$. Then there is a sequence of disjoint closed intervals $I_{n}=$ $\left[a_{n}, b_{n}\right] \subset(x-2, x+2), n=1,2, \ldots$, such that:
$-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x ;$
$-d_{u}\left(\bigcup_{n} I_{n}, x\right)=0 ;$
$-(A-\{x\}) \cap[x-1, x+1] \subset \bigcup_{n} \operatorname{int}\left(I_{n}\right)$.
Proof. Fix a positive integer k and observe that the sets

$$
B_{k}=[x+1 /(k+1), x+1 / k] \cap A
$$

and

$$
C_{k}=[x-1 / k, x-1 /(k+1)] \cap A
$$

are compact. Let U_{k}, V_{k} be open sets such that
$-B_{k} \subset U_{k} \subset\left[x+(k+1)^{-1}-(4(k+1))^{-3}, x+k^{-1}+(4 k)^{-3}\right] ;$
$-C_{k} \subset V_{k} \subset\left[x-k^{-1}-(4 k)^{-3}, x-(k+1)^{-1}+(4(k+1))^{-3}\right] ;$
$-\mu\left(U_{k}-B_{k}\right)<\mu\left(B_{k}\right)+k^{-3} ;$
$-\mu\left(V_{k}-C_{k}\right)<\mu\left(C_{k}\right)+k^{-3}$.
Since the sets B_{k}, C_{k} are compact, there are finite families of disjoint closed intervals

$$
\left\{K_{i, k} ; i=1, \ldots, i(k)\right\}
$$

and

$$
\left\{L_{j, k} ; j=1, \ldots, j(k)\right\}
$$

such that

$$
B_{k} \subset \bigcup_{i=1}^{i(k)} \operatorname{int}\left(K_{i, k}\right) \subset U_{k}
$$

and

$$
C_{k} \subset \bigcup_{j=1}^{j(k)} \operatorname{int}\left(L_{j, k}\right) \subset V_{k}
$$

Then every enumeration $\left(I_{n}\right)_{n}$ of all connected components of the union

$$
\bigcup_{k}\left(\bigcup_{i=1}^{i(k)} K_{i, k} \cup \bigcup_{j=1}^{j(k)} L_{j, k}\right)
$$

such that $I_{i} \cap I_{j}=\emptyset$ for $i \neq j, i, j=1,2, \ldots$, satisfies all required conditions. So, the proof is completed.

Remark 5 Suppose that a function $f \in Q_{s}$ is not $\mathcal{T}_{a e}$ - continuous at a point x at which $f(x)=0$. If

$$
d_{u}(\{t ; f(t)=0\}, x)=0
$$

then there is a function $g \in Q_{s}$ such that the product $f g$ is not in Q_{s}.
Proof. Since f is almost everywhere continuous, we obtain

$$
\mu(c l(\{t ; f(t)=0\})-\{t ; f(t)=0\})=0
$$

and

$$
d_{u}(c l(\{t ; f(t)=0\}), x)=0
$$

By Lemma 1 there are disjoint closed intervals $I_{n}=\left[a_{n}, b_{n}\right] \subset(x-2, x+$ 2) $-\{x\}, n=1,2, \ldots$, such that
$-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=x ;$
$-[x-1, x+1] \cap c l(\{t ; f(t)=0\})-\{x\} \subset \bigcup_{n} \operatorname{int}\left(I_{n}\right) ;$
$-d_{u}\left(\bigcup_{n} I_{n}, x\right)=0$.
Since the function f is not $\mathcal{T}_{a e}-$ continuous at x, there are a positive real η and disjoint closed intervals $J_{n}=\left[c_{n}, d_{n}\right] \subset(\{t ;|f(t)| \geq \eta / 2\} \cap(x-1, x+$ 1)) $-\bigcup_{k} I_{k}$ such that $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} d_{n}=x$ and $d_{u}\left(\bigcup_{n} J_{n}, x\right)>0$. Moreover, we can assume that f is continuous at all points $a_{n}, b_{n}, c_{n}, d_{n}, n=$ $1,2, \ldots$.

Put
$g(t)=\left\{\begin{array}{ccl}\eta & \text { if } & (t=x) \vee\left(t \in J_{n}, n \geq 1\right) \\ 1 & \text { if } & (t \leq x-1) \vee(t \geq x+1) \vee\left(t \in I_{n}, n \geq 1\right) \\ 1 / f(t) & \text { otherwise. }\end{array}\right.$
It is obvious that the function g is s.q.c. at x and at every point $t \in$ $\bigcup_{n}\left(I_{n} \cup J_{n}\right) \cup(-\infty, x-1] \cup[x+1, \infty)$. By elementary method we can prove that it is also s.q.c. at each point t at which $g(t)=1 / f(t)$. So, $g \in Q_{s}$. But the product $f g$ is not s.q.c. at x, since $f(x) g(x)=0, f(t) g(t)=1$ for $t \in(x-2, x+2)-\bigcup_{n}\left(I_{n} \cup J_{n}\right)-\{x\},|f(t) g(t)| \geq \eta^{2} / 2$ for $t \in J_{n}, n \geq 1$, and $d_{u}\left(\bigcup_{n} I_{n}, x\right)=0$. This finishes the proof.

From Remarks 1 - 5 it follows immediately:
Theorem 4 A function $f \in \operatorname{Max}_{\text {mult }}\left(Q_{s}\right)$ if and only if it is in Q_{s} and satisfies the following condition:
(F) if f is not $\mathcal{T}_{a e}-$ continuous at a point x then $f(x)=0$ and $d_{u}(\{t ; f(t)=$ $0\}, x)>0$.

References

[1] A.M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
[2] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables Real Anal. Exch., 20 no. 2 (1994/95).
[3] Z. Grande, On the product strong quasi-continuity, Real Anal. Exch., (to appear).
[4] R.J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207-222.

[^0]: Key Words: continuity, strong quasicontinuity, density topology, maximal additive and multiplicative families

 Mathematical Reviews subject classification: Primary: 26A15 Secondary: 54C08, 54C30
 Received by the editors September 14, 1994

