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ON THE MAXIMAL FAMILIES FOR THE
CLASS OF STRONGLY
QUASI-CONTINUOUS FUNCTIONS

Abstract

It is investigated the maximal families (additive, multiplicative, lat-
tice and with respect to the composition) for the class of strongly qua-
sicontinuous functions.

Let R be the set of all reals and let p. (u) denote the outer Lebesgue
measure (the Lebesgue measure) in R. Denote by

dy(A,z) = limsupp.(AN(z — h,z+ h))/2h
h=0

(di(A4,2) = liminfue(A N (= b,z +h))/2h)

the upper (lower) density of a set A C R at a point z. A point z € R is called
a density point of a set A C R if there exists a measurable (in the sense of
Lebesgue) set B C A such that d;(B,z) = 1. The family

Ta = {A C R; A is measurable and every point z € A is a density point of A}
is a topology called the density topology [1]. Denote by int(A) the interior of
the set A. The family

Tae = {A € Ta; u(A — int(A)) = 0}

is also a topology [4].

A function f (from R into R) is called T,.— continuous (73— continuous
or approximately continuous) at a point z if it is continuous at z as the
application from (R, 7;.) (from (R, 7g)) into (R, 7;), where 7. denotes the
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Euclidean topology in R. A function f is 74.— continuous (everywhere on
R) if and only if it is 74— continuous (everywhere) and almost everywhere
(relative to u) continuous [4]. A function f is said to be strongly quasi-
continuous (in short s.q.c.) at a point z if for every set A € Ty containing z
and for every positive real n there is an open interval I such that TN A # @
and |f(t) - f(z)| < npforallte ANT [2].

A function f : R — R is s.q.c. at a point £ € R whenever there is an
open set U such that dy (U, z) > 0 and the restricted function f/(U U {z}) is
continuous at z [3]. Now, let:

- C = {f; f is continuous };

= Cae = {f; f is Tae— continuous };

- Qs={f;fissqc}

- Maz.44(Q;s) = {f; f +9 € Q; for every g € Q,};

~ Mazmut(Qs) = {f; fg € Qs; for every g € Q,};

- Mazma:(Q:) = {f; max(f, ) € Q; for every g € Qs};
- Mazmin(Qs) = {f; min(f, g) € Q; for every g € Q,};
= Mazcomp(Qs) = {f; f o g € Q; for every g € Q;}.

Remark 1 Since all constant functions and the function f(z) = z forz € R
belong to Q;, we have immediately

Ma-zadd(Qs) UMazmuie (Qs) UMazmas (QJ) U
UMaxmin(Qs) U Mazcomp(Qs) CQs.

Remark 2 Since the intersection of an open set A having at a point r the
density 1 and an open set B having at = positive upper density is an open set
having at = positive upper density, from the elementary properties of continu-
ous functions it follows the followig inclusions:

- Cae C Mazadd(Qs) N Mazmur (Q:) NMazmaz (Qs) NMazmin (Qs);
-CcC Mal'comp (Q:)

Theorem 1 The equality

Mazadd(Q:) = Caqe

18 true.
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Proof. By Remark 2 we have the inclusion Cge C Maz,44(Q;). For the
proof of the inclusion Maz,q44(Qs) C Cae fix a function f € Mazaq44(Qs). By
Remark 1 the function f € Q,. If f is not in C,, then there are a point z € R
and a positive number 7 such that the closure cl({t;|f(t) — f(z)| > n}) of the
set {t;|f(t) — f(z)| > n} has positive upper density at a point z. We can
assume that the closure

c({t; £(t) > f(z) +n})

has positive upper density at a point z. Since f belonging to Q, is almost
everywhere continuous [2, 3], we obtain

u(el({t; £(t) > f(z) +n}) = {t; f(t) > f(z) +n}) =0
and consequently,
du(int({t; f(t) > f(z) + n/2}),2) > 0.

Thus there is a sequence of disjoint closed intervals I, = [an,bs] C {t; f(t) >
f(z) +n/2},n=1,2,..., such that:

(1) zisnotin In forn=1,2,..
(2) f is continuous at all points a,,b,,n=1,2,..
(3) limpyoo n = liMpyo0 bn = z;
(4) du(U, In,2) > 0.
Put

—f(z)+n/2 if t=z)vV(tel,,n=1,2,...
g(t):{ (—,)f(t)n/ otherwise. ( Vi :

Then g € Qs, f(z) +9(z) = n/2, f(t) +g(t) 2nforten, n=12,...
and f(t) + g(t) = 0 otherwise on R. So, f + g is not in Q, and consequently
f is not in Maz,44(Q;). This contradiction finishes the proof.

Theorem 2 The equalities
Mazpy,., (Q:) = Mazmin (Q:) = Cae

are true.
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Proof. By Remark 2 we have

Cae C Mazpq, (Q:) N Mazmin(Qs)-

We will show only that Mazma;(Q;s) C Cae, because the proof of the inclusion
Mazmin(Q;s) C Cqe is similar. Let f € Mazmqa:(Qs) be a function. By
Remark 1 the function f € @,. If f is not in C,. then there are a point z and
a positive number 7 such that

du(cl({t; 1£(t) = f(z)| > n}),z) > 0.

If
du (cl({t; F(t) > f() +n}),2) >0,

as in the proof of Theorem 1, there are disjoint closed intervals

I = [an, b) C {t; f(t) > f(z) +n/2},

such that conditions (1) — (4) from the proof of Theorem 1 are satisfied. Let

n={ fz)=n if (t=z)V(tel,,n=12...,))
9(t) = f(z) +n otherwise.

Then g € Q,, max(f(z),g(z)) = f(z) and max(f(¢),9(t)) > f(z) +n/2 for
t # z. So, max(f, g) is not in @, and consequently, f is not in Mazm.z(Q5).
Thus

du(Cl({t; £(2) < £(z) — 1)), 2) > 0
and there are disjoint closed intervals I, = [an,b,] C {t; f(¢) < f(z) -
n/2},n = 1,2,..., which satisfy conditions (1)-(4) from the proof of The-
orem 1. Let the function g be defined the same as above. Then g € Q;,

max(f(z),g(z)) = f(z), max(f(t),9(t)) < f(z) —n/2fort € I,,n=1,2,...,
and max(f(t), ¢(t)) > f(z)+n otherwise on R. So, max(f, g) is not in Q,, and
consequently f is not in Mazmaz(Qs). This contradiction finishes the proof.

Theorem 3 The equality
Ma:ccomp(Qs) =C
is true.

Proof. By Remark 2 we have the inclusion C C M aZcomp(Qs). Suppose
that a function f is not continuous at a point y. Then there is a sequence of

points ¥, # y,n = 1,2,..., such that lim, o yn = y and limp o0 f(¥n) #
f(y). Let I, = [an,bn],n=1,2,..., be disjoint closed intervals such that
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- limpe0 @n = limp 00 b = 0;
- apb, >0forn=1,2,...;
- du(U, In,0) > 0.

Put

Yy if z=0

yﬂ if -‘L'an,n=1,2,...,
9(z) =
y1  otherwise.

Then g € Q; and f o g is not in @,, since f o g is not s.q.c. at z = 0. So,
Maz omp(Qs) C C, and the proof is completed.

Remark 3 If a function f € Q; is not T,.— continuous at a point z € R at
which f(z) # 0 then there is a function g € Q, such that fg is not in Q;.

Proof. The same as in the proof of Theorem 1 we prove that there exist a
positive real 7 and disjoint closed intervals I, = [an,b,] C {t;|f(t) — f(z)| >
n/2} which satisfy conditions (1)—(4) from the proof of Theorem 1. Put

) = 1 if t=z)v(tel,,n=12,...,)
IU) =9 0 otherwise.

Then g € Q; and fg is not in Q;, since fg is not s.q.c. at . This completes
the proof.

Remark 4 Let f € Q; be a function and let £ € R be a point such that
f(z) = 0. Ifdu({t; f(t) = 0},z) > O then for every function g € Q, the
product fg is s.q.c. at z.

Proof. Since the functions f,g are almost everywhere continuous, the
product fg is the same. Consequently, if A = {t; f(t)g(t) = 0 and f,g are
continuous at t} then dy(A, z) > 0 and for every 7 > 0 we have

du(int({t; |f(t)g(t)| < n}),z) > du(4,z) > 0.

So, the product fg is s.q.c. at z and the proof is completed.
To prove the following result, Remark 5, we will apply the following:

Lemma 1 Let A C R be a closed set and let £ € A be a point such that
dy(A,z) = 0. Then there is a sequence of disjoint closed intervals I, =
[an,bp) C(z—2,24+2), n=1,2,..., such that:

= limp 500 @n = liMp 00 b = 2
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- dy(Un I, 2) =0;

-(A-{z})n[z-1,z+1] C U, int(ln).

Proof. Fix a positive integer k and observe that the sets
By =[z+1/(k+1),z+1/k|NA

and
Ce=[c—-1/k,z-1/(k+1)]NA

are compact. Let Uk, Vi be open sets such that
By CUk Cle+ (k+1)7' = (4(k+1))7%,z+ k=1 + (45)75);
Ce CViClz =k~ —(4k) 3,z = (k+ 1)1 + (4(k + 1))73];

/J(Uk - Bk) < ,U(Bk) + k—3;

w(Vk = Ci) < p(Ck) + k73,

Since the sets By, C) are compact, there are finite families of disjoint closed
intervals

(Kip;i=1,...,i(k)}

and
{Lj,k;j =1,... ,j(k)}
such that
i(k)
B, C U int(K; k) C Uk
i=1
and
i(k)
Ci C U int(Lj,k) C Ve.
j=1

Then every enumeration (I,), of all connected components of the union

i(k) (k)
U Kiru U Lsw)
koi=1 j=1

such that ;NI; =@ fori#j, 4,5 =1,2,..., satisfies all required conditions.
So, the proof is completed. '
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Remark 5 Suppose that a function f € Q; is not T,e— continuous at a point
z at which f(z) = 0. If

du({t; f(t) = 0},2) =0
then there is a function g € Q, such that the product fg is not in Q,.

Proof. Since f is almost everywhere continuous, we obtain

pd({t; f()) =0} = {t; f(1) =0}) = 0
and
du(cl({t; £(t) = 0}),2) = 0:

By Lemma 1 there are disjoint closed intervals I, = [a,,b,] C (z — 2,2+
2) — {z},n=1,2,..., such that

- limp 00 @n = limp 400 bn = z;

- [z =L z+1]ncd({t; f(t) = 0}) = {z} C U, int(1n);

- du(U, In,z) = 0.

Since the function f is not 7;.— continuous at z, there are a positive real
n and disjoint closed intervals J, = [¢q,dn] C ({t;|f(1)] > n/2}N(z -1,z +
1)) — U Ik such that lim, e ¢ = liMp00dn = = and du (U, Jn,z) > 0.
Moreover, we can assume that f is continuous at all points a,,b,,¢n,dn, n =
1,2,... ’

Put
n if (t=z)V(tE€JTnn>1)
g(t) = 1 if t<z-=-1)V(@Et2z+1l)V(tel,,n>1)
1/f(t) otherwise.

It is obvious that the function g is s.q.c. at z and at every point t €
Un(In U Jn)U (=00, z — 1] U [z + 1,00). By elementary method we can prove
that it is also s.q.c. at each point ¢t at which g(t) = 1/f(t). So, g € Q;.
But the product fg is not s.q.c. at z, since f(z)g(z) = 0, f(t)g(t) = 1 for
te(z—2,2+2)—U,(InUJn)—{z}, |f()g(t)| > n*/2fort € Jo,n > 1, and
du(U, In,z) = 0. This finishes the proof.

From Remarks 1 - 5 it follows immediately:

Theorem 4 A function f € Mazmui(Qs) if and only if it is in Q, and
satisfies the following condition:

(F) if f is not Tae— continuous at a point x then f(z) = 0 and dy({t; f(t) =
0},z) > 0.
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