Zbigniew Grande, Mathematics Department, Pedagogical University, Plac Słowiański 9, 65-069 Zielona Góra, Poland

ON THE MAXIMAL FAMILIES FOR THE CLASS OF STRONGLY QUASI-CONTINUOUS FUNCTIONS

Abstract

It is investigated the maximal families (additive, multiplicative, lattice and with respect to the composition) for the class of strongly quasicontinuous functions.

Let \mathbb{R} be the set of all reals and let μ_e (μ) denote the outer Lebesgue measure (the Lebesgue measure) in \mathbb{R} . Denote by

$$d_u(A, x) = \limsup_{h \to 0} \mu_e(A \cap (x - h, x + h))/2h$$
$$(d_l(A, x) = \liminf_{h \to 0} \mu_e(A \cap (x - h, x + h))/2h)$$

the upper (lower) density of a set $A \subset \mathbb{R}$ at a point x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family

 $\mathcal{T}_d = \{A \subset \mathbb{R}; A \text{ is measurable and every point } x \in A \text{ is a density point of } A\}$ is a topology called the density topology [1]. Denote by int(A) the interior of the set A. The family

$$\mathcal{T}_{ae} = \{A \in \mathcal{T}_d; \mu(A - int(A)) = 0\}$$

is also a topology [4].

A function f (from \mathbb{R} into \mathbb{R}) is called \mathcal{T}_{ae} - continuous (\mathcal{T}_d - continuous or approximately continuous) at a point x if it is continuous at x as the application from $(\mathbb{R}, \mathcal{T}_{ae})$ (from $(\mathcal{R}, \mathcal{T}_d)$) into $(\mathbb{R}, \mathcal{T}_e)$, where \mathcal{T}_e denotes the

Key Words: continuity, strong quasicontinuity, density topology, maximal additive and multiplicative families

Mathematical Reviews subject classification: Primary: 26A15 Secondary: 54C08, 54C30

Received by the editors September 14, 1994

Euclidean topology in \mathbb{R} . A function f is \mathcal{T}_{ae} - continuous (everywhere on \mathbb{R}) if and only if it is \mathcal{T}_d - continuous (everywhere) and almost everywhere (relative to μ) continuous [4]. A function f is said to be strongly quasicontinuous (in short s.q.c.) at a point x if for every set $A \in \mathcal{T}_d$ containing xand for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t) - f(x)| < \eta$ for all $t \in A \cap I$ [2].

A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is s.q.c. at a point $x \in \mathbb{R}$ whenever there is an open set U such that $d_u(U, x) > 0$ and the restricted function $f/(U \cup \{x\})$ is continuous at x [3]. Now, let:

- $-C = \{f; f \text{ is continuous }\};$
- $C_{ae} = \{f; f \text{ is } \mathcal{T}_{ae} \text{ continuous }\};$

$$- Q_s = \{f; f \text{ is s.q.c.}\};$$

- $Max_{add}(Q_s) = \{f; f + g \in Q_s \text{ for every } g \in Q_s\};$
- $Max_{mult}(Q_s) = \{f; fg \in Q_s; \text{ for every } g \in Q_s\};$
- $Max_{max}(Q_s) = \{f; \max(f, g) \in Q_s \text{ for every } g \in Q_s\};$
- $Max_{min}(Q_s) = \{f; \min(f, g) \in Q_s \text{ for every } g \in Q_s\};\$
- $Max_{comp}(Q_s) = \{f; f \circ g \in Q_s \text{ for every } g \in Q_s\}.$

Remark 1 Since all constant functions and the function f(x) = x for $x \in \mathbb{R}$ belong to Q_s , we have immediately

$$Max_{add}(Q_s) \cup Max_{mult}(Q_s) \cup Max_{max}(Q_s) \cup \\ \cup Max_{min}(Q_s) \cup Max_{comp}(Q_s) \subset Q_s.$$

Remark 2 Since the intersection of an open set A having at a point x the density 1 and an open set B having at x positive upper density is an open set having at x positive upper density, from the elementary properties of continuous functions it follows the following inclusions:

$$-C_{ae} \subset Max_{add}(Q_s) \cap Max_{mult}(Q_s) \cap Max_{max}(Q_s) \cap Max_{min}(Q_s);$$
$$-C \subset Max_{comp}(Q_s).$$

Theorem 1 The equality

$$Max_{add}(Q_s) = C_{ae}$$

is true.

Proof. By Remark 2 we have the inclusion $C_{ae} \subset Max_{add}(Q_s)$. For the proof of the inclusion $Max_{add}(Q_s) \subset C_{ae}$ fix a function $f \in Max_{add}(Q_s)$. By Remark 1 the function $f \in Q_s$. If f is not in C_{ae} then there are a point $x \in \mathbb{R}$ and a positive number η such that the closure $cl(\{t; |f(t) - f(x)| > \eta\})$ of the set $\{t; |f(t) - f(x)| > \eta\}$ has positive upper density at a point x. We can assume that the closure

$$cl(\{t; f(t) > f(x) + \eta\})$$

has positive upper density at a point x. Since f belonging to Q_s is almost everywhere continuous [2, 3], we obtain

$$\mu(cl(\{t; f(t) > f(x) + \eta\}) - \{t; f(t) \ge f(x) + \eta\}) = 0$$

and consequently,

$$d_u(int(\{t; f(t) > f(x) + \eta/2\}), x) > 0.$$

Thus there is a sequence of disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; f(t) > f(x) + \eta/2\}, n = 1, 2, \ldots$, such that:

- (1) x is not in I_n for n = 1, 2, ...;
- (2) f is continuous at all points $a_n, b_n, n = 1, 2, \ldots$;
- (3) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x;$
- (4) $d_u(\bigcup_n I_n, x) > 0.$

Put

$$g(t) = \begin{cases} -f(x) + \eta/2 & if \quad (t=x) \lor (t \in I_n, n=1, 2, \ldots) \\ -f(t) & otherwise. \end{cases}$$

Then $g \in Q_s$, $f(x) + g(x) = \eta/2$, $f(t) + g(t) \ge \eta$ for $t \in I_n$, n = 1, 2, ...and f(t) + g(t) = 0 otherwise on \mathbb{R} . So, f + g is not in Q_s and consequently f is not in $Max_{add}(Q_s)$. This contradiction finishes the proof.

Theorem 2 The equalities

$$Max_{max}(Q_s) = Max_{min}(Q_s) = C_{ae}$$

are true.

Proof. By Remark 2 we have

$$C_{ae} \subset Max_{max}(Q_s) \cap Max_{min}(Q_s).$$

We will show only that $Max_{max}(Q_s) \subset C_{ae}$, because the proof of the inclusion $Max_{min}(Q_s) \subset C_{ae}$ is similar. Let $f \in Max_{max}(Q_s)$ be a function. By Remark 1 the function $f \in Q_s$. If f is not in C_{ae} then there are a point x and a positive number η such that

$$d_u(cl(\{t; |f(t) - f(x)| > \eta\}), x) > 0.$$

If

$$d_u(cl(\{t; f(t) > f(x) + \eta\}), x) > 0,$$

as in the proof of Theorem 1, there are disjoint closed intervals

$$I_n = [a_n, b_n] \subset \{t; f(t) > f(x) + \eta/2\},\$$

such that conditions (1) - (4) from the proof of Theorem 1 are satisfied. Let

$$g(t) = \begin{cases} f(x) - \eta & if \\ f(x) + \eta & otherwise. \end{cases} \quad (t = x) \lor (t \in I_n, n = 1, 2, \dots,)$$

Then $g \in Q_s$, $\max(f(x), g(x)) = f(x)$ and $\max(f(t), g(t)) \ge f(x) + \eta/2$ for $t \ne x$. So, $\max(f, g)$ is not in Q_s and consequently, f is not in $Max_{max}(Q_s)$. Thus

$$d_u(cl(\{t; f(t) < f(x) - \eta\}), x) > 0$$

and there are disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; f(t) < f(x) - \eta/2\}, n = 1, 2, \ldots$, which satisfy conditions (1)-(4) from the proof of Theorem 1. Let the function g be defined the same as above. Then $g \in Q_s$, $\max(f(x), g(x)) = f(x), \max(f(t), g(t)) \leq f(x) - \eta/2$ for $t \in I_n, n = 1, 2, \ldots$, and $\max(f(t), g(t)) \geq f(x) + \eta$ otherwise on \mathbb{R} . So, $\max(f, g)$ is not in Q_s , and consequently f is not in $Max_{max}(Q_s)$. This contradiction finishes the proof.

Theorem 3 The equality

$$Max_{comp}(Q_s) = C$$

is true.

Proof. By Remark 2 we have the inclusion $C \subset Max_{comp}(Q_s)$. Suppose that a function f is not continuous at a point y. Then there is a sequence of points $y_n \neq y, n = 1, 2, \ldots$, such that $\lim_{n \to \infty} y_n = y$ and $\lim_{n \to \infty} f(y_n) \neq f(y)$. Let $I_n = [a_n, b_n], n = 1, 2, \ldots$, be disjoint closed intervals such that

634

$$-\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=0;$$

 $-a_nb_n > 0$ for $n = 1, 2, \ldots,;$

$$- d_u(\bigcup_n I_n, 0) > 0.$$

 \mathbf{Put}

$$g(x) = \begin{cases} y_n & if \quad x \in I_n, n = 1, 2, \dots, \\ y & if \quad x = 0 \\ y_1 & otherwise. \end{cases}$$

Then $g \in Q_s$ and $f \circ g$ is not in Q_s , since $f \circ g$ is not s.q.c. at x = 0. So, $Max_{comp}(Q_s) \subset C$, and the proof is completed.

Remark 3 If a function $f \in Q_s$ is not \mathcal{T}_{ae} - continuous at a point $x \in \mathbb{R}$ at which $f(x) \neq 0$ then there is a function $g \in Q_s$ such that fg is not in Q_s .

Proof. The same as in the proof of Theorem 1 we prove that there exist a positive real η and disjoint closed intervals $I_n = [a_n, b_n] \subset \{t; |f(t) - f(x)| > \eta/2\}$ which satisfy conditions (1)-(4) from the proof of Theorem 1. Put

$$g(t) = \begin{cases} 1 & if \\ 0 & otherwise. \end{cases} \quad (t = x) \lor (t \in I_n, n = 1, 2, \dots,)$$

Then $g \in Q_s$ and fg is not in Q_s , since fg is not s.q.c. at x. This completes the proof.

Remark 4 Let $f \in Q_s$ be a function and let $x \in \mathbb{R}$ be a point such that f(x) = 0. If $d_u(\{t; f(t) = 0\}, x) > 0$ then for every function $g \in Q_s$ the product fg is s.q.c. at x.

Proof. Since the functions f, g are almost everywhere continuous, the product fg is the same. Consequently, if $A = \{t; f(t)g(t) = 0 \text{ and } f, g \text{ are continuous at } t\}$ then $d_u(A, x) > 0$ and for every $\eta > 0$ we have

$$d_u(int(\{t; |f(t)g(t)| < \eta\}), x) \ge d_u(A, x) > 0.$$

So, the product fg is s.q.c. at x and the proof is completed.

To prove the following result, Remark 5, we will apply the following:

Lemma 1 Let $A \subset \mathbb{R}$ be a closed set and let $x \in A$ be a point such that $d_u(A, x) = 0$. Then there is a sequence of disjoint closed intervals $I_n = [a_n, b_n] \subset (x - 2, x + 2), n = 1, 2, \ldots$, such that:

 $-\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=x;$

$$- d_u(\bigcup_n I_n, x) = 0;$$

- $(A - \{x\}) \cap [x - 1, x + 1] \subset \bigcup_n int(I_n).$

Proof. Fix a positive integer k and observe that the sets

$$B_k = [x + 1/(k + 1), x + 1/k] \cap A$$

and

$$C_k = [x - 1/k, x - 1/(k + 1)] \cap A$$

are compact. Let U_k , V_k be open sets such that

$$\begin{aligned} &-B_k \subset U_k \subset [x+(k+1)^{-1}-(4(k+1))^{-3}, x+k^{-1}+(4k)^{-3}]; \\ &-C_k \subset V_k \subset [x-k^{-1}-(4k)^{-3}, x-(k+1)^{-1}+(4(k+1))^{-3}]; \\ &-\mu(U_k-B_k) < \mu(B_k)+k^{-3}; \\ &-\mu(V_k-C_k) < \mu(C_k)+k^{-3}. \end{aligned}$$

Since the sets B_k , C_k are compact, there are finite families of disjoint closed intervals

$$\{K_{i,k}; i=1,\ldots,i(k)\}$$

and

$$\{L_{j,k}; j=1,\ldots,j(k)\}$$

such that

$$B_k \subset \bigcup_{i=1}^{i(k)} int(K_{i,k}) \subset U_k$$

and

$$C_k \subset \bigcup_{j=1}^{j(k)} int(L_{j,k}) \subset V_k.$$

Then every enumeration $(I_n)_n$ of all connected components of the union

$$\bigcup_{k} (\bigcup_{i=1}^{i(k)} K_{i,k} \cup \bigcup_{j=1}^{j(k)} L_{j,k})$$

such that $I_i \cap I_j = \emptyset$ for $i \neq j$, i, j = 1, 2, ..., satisfies all required conditions. So, the proof is completed.

636

Remark 5 Suppose that a function $f \in Q_s$ is not \mathcal{T}_{ae} - continuous at a point x at which f(x) = 0. If

$$d_u({t; f(t) = 0}, x) = 0$$

then there is a function $g \in Q_s$ such that the product fg is not in Q_s .

Proof. Since f is almost everywhere continuous, we obtain

$$\mu(cl(\{t; f(t) = 0\}) - \{t; f(t) = 0\}) = 0$$

and

$$d_u(cl({t; f(t) = 0}), x) = 0.$$

By Lemma 1 there are disjoint closed intervals $I_n = [a_n, b_n] \subset (x - 2, x + 2) - \{x\}, n = 1, 2, \ldots$, such that

- $-\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=x;$
- [x 1, x + 1] ∩ $cl({t; f(t) = 0}) {x} \subset \bigcup_n int(I_n);$
- $d_u(\bigcup_n I_n, x) = 0.$

Since the function f is not \mathcal{T}_{ae} - continuous at x, there are a positive real η and disjoint closed intervals $J_n = [c_n, d_n] \subset (\{t; |f(t)| \ge \eta/2\} \cap (x-1, x+1)) - \bigcup_k I_k$ such that $\lim_{n\to\infty} c_n = \lim_{n\to\infty} d_n = x$ and $d_u(\bigcup_n J_n, x) > 0$. Moreover, we can assume that f is continuous at all points $a_n, b_n, c_n, d_n, n = 1, 2, \ldots$

 \mathbf{Put}

$$g(t) = \begin{cases} \eta & if & (t = x) \lor (t \in J_n, n \ge 1) \\ 1 & if & (t \le x - 1) \lor (t \ge x + 1) \lor (t \in I_n, n \ge 1) \\ 1/f(t) & otherwise. \end{cases}$$

It is obvious that the function g is s.q.c. at x and at every point $t \in \bigcup_n (I_n \cup J_n) \cup (-\infty, x-1] \cup [x+1, \infty)$. By elementary method we can prove that it is also s.q.c. at each point t at which g(t) = 1/f(t). So, $g \in Q_s$. But the product fg is not s.q.c. at x, since f(x)g(x) = 0, f(t)g(t) = 1 for $t \in (x-2, x+2) - \bigcup_n (I_n \cup J_n) - \{x\}$, $|f(t)g(t)| \ge \eta^2/2$ for $t \in J_n$, $n \ge 1$, and $d_u(\bigcup_n I_n, x) = 0$. This finishes the proof.

From Remarks 1 – 5 it follows immediately:

Theorem 4 A function $f \in Max_{mult}(Q_s)$ if and only if it is in Q_s and satisfies the following condition:

(F) if f is not \mathcal{T}_{ae} - continuous at a point x then f(x) = 0 and $d_u(\{t; f(t) = 0\}, x) > 0$.

References

- A.M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer-Verlag.
- [2] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables Real Anal. Exch., 20 no. 2 (1994/95).
- [3] Z. Grande, On the product strong quasi-continuity, Real Anal. Exch., (to appear).
- [4] R.J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207-222.