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 FINITE ADDITIVITY AND CLOSEST

 APPROXIMATIONS

 Abstract

 Suppose that Q is a set, F is a field of subsets of f2, and A(ïïl)(F)
 is the set of all real-valued finitely additive functions defined on F. For
 each f G A(R)(F) let A(f) = {rj : rj £ j4(K)(F), £ - rj bounded}. It is
 shown that for each £ in A(R)(F), for certain subsets of ^4(£) with special
 closure properties, theorems about closest approximations, functional
 equations and decompositions hold.

 1 Introduction

 In a large variety of spaces, near - point, or closest approximation considera-
 tions frequently arise, either explicitly, in the form of theorems, or implicitly,
 as parts of various arguments. Among these spaces, various function spaces
 play a prominent role (see [1,2,3,4,6,7]), and it is for such a function space,
 specifically a space of finitely additive set functions, not necessarily bounded,
 that we carry out our investigations concerning closest approximations in this
 paper.

 Suppose that Q, is a set, F is a field of subsets of ÎÎ, A(M)(F) is the set of
 all real-valued functions with domain F that are finitely additive, AB(R)(F)
 is the set of all bounded elements of A(M)(F) and AB(R)(F)+ is the set of all
 nonnegative - valued elements of A(M)(F). In this paper, all integrals will be
 refinement - wise limits of the appropriate sums (see section 2).

 Many subsets of AB(M)(F) have a near point property, and we list some
 of these below.

 Suppose that p is in AB(M)(F)+.

 1) Let Ap = {£ : £ in AB(R)(F),£ absolutely continuous with respect to p)
 (e,¿ definition).
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 2) Let Cp denote the set to which £ belongs iff £ is in AB{R)(F) and is
 "// - refinement - continuous", i. e., if 0 < c, then there is d > 0 and
 subdivision D of fì such that if I is in F and I Ç V for some V in D
 and fi(I) < d , then |£(/)| < c.

 3) Suppose that a is a function from F into exp(R) with bounded range
 union. Let 1Q denote {£ : £ in AB(lBŁ)(F)y exists }.

 4) For some K > 0 let

 Lip (n, K) = {£ : £ in AB(K)(F), Kp - J in AB(R)(F)+)

 Now, if P is any of the above subsets and £ is in AB(R)(F)i then there is an
 element v of P such that if 7 is in P and 7 ^2/, then

 Jn f K(j)-„(/)i< Ja [ m --rivi Jn Ja

 This fact is a special case of the following closest approximation theorem [1]:

 Theorem 1.1 Suppose that P is a subset of AB(M)(F) satisfying the follow-
 ing conditions:

 1) If 77 is in P, Ç is in AB(ïïl)(F) and f 'rj' - f |£| is in AB(iïl)(F)+ , then
 £ is in P, and

 2) If fi is in AB(M)(F)+ and X is the function with domain F given by

 '{V) = sup{T){V) : 77 in A5(®)(F)+},

 then X is in P D AB(R)(F)+.

 Then , for each £ in AB(5k)(F) there is an element v of P such that if 7 is in
 P and 7 ¿ v, then fn | £(/) - u(I) ' < Jft |£(J) -7(J)|.

 Now, for the above setting, it can be easily shown that for f and v as described,

 7 in P and V in F, that fv |f(J) - v(I)' < fv |£(/) - 7(/)|. For a subset of
 AB(R)(F) for which the uniqueness of minimizing functions is not necessarily
 true, the immediately preceding inequality is the best possible. It is this sort
 of inequality that we obtain as a generalization of Theorem 1.1 and which we
 state below immediately after Definitions 1.1 and 1.2.

 Definition 1.1 If 77 is in A(1R)(F) and V is in F, then is the function
 from F into M given by r¡^v^[I) = r¡(V O /); we take the usual liberties with set
 intersections; clearly rj^ is in A(M)(F).
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 Definition 1.2 If £ is in J4(M)(F), then

 ¿(0 = {t, : 7? in A(R)(F),Ç-t, in AB(K)(.F)}.

 Clearly {(£, v) : C - i/ in j4£(IR)(F)} is an equivalence relation, so that if each
 of rj and £ is in A(R)(F ), then A(C) = A(rj) iff A(C) and A(tj) have an element
 in common.

 Theorem 3.1 Suppose that £ is in j4(M)(F), M Ç A(£) and the following
 three statements are true:

 1) If each ofrj and Ç is in M, then so is each of J max{r)X} and f min{rjX}
 (see section 2 concerning the existence of certain integrals).

 2) IfV is in F, V ^ Ū and each of rj and £ is in M, then rf>vi -f £tn*~v] is
 in M .

 3) Suppose that A is a function from F into M and is a sequence
 of elements of M such that either:

 i) for each V in F, fJ-n{V) < /in+i(V) for all n, and

 A(V") = sup{fin(V) : n a positive integer },

 or

 ii) for each V in F, ßn(V) > /zn+ i(V) for all n, and

 X(V) = inf{fin(V) : n a positive integer}.

 Then A is in M .

 Then there is A 9 in M such that ifrj is in M and V is in F, then

 Jvm-*(i)'<Jvw)-ri(i)'-
 As was remarked above, the inequality of the conclusion of Theorem 3.1 is
 the "best possible". To see this, let F( o;i] denote the collection of all unions
 of finite subcollections of : 0 < p < q < 1}. As is well-known,
 is a field of subsets of (0; 1]. By well-known methods there is an element p,
 in AB(R)(F(o;i])+ such that {£ : f in AB(R)(-F(o;i]), f |f| = //}, denoted by
 V(/i), contains more than one element. Letting 0 denote the zero function on
 jF(0;i] , we see that (0, V(p)) satisfies the hypothesis of Theorem 3.1 with the
 further property that if p' and p2 are in V(p) and V is in F( o;i], then

 Jv [ io(/) - pi(i)' = [ m-p2(i)'. Jv Jv
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 As a further example of a subset of A(TSi)(F) that satisfies the hypothesis of
 Theorem 3.1, but not necessarily the hypothesis nor the conclusion of Theorem
 1.1, we consider the following generalization of the example of the immediately
 preceding paragraph.

 Example: Suppose that H is a closed and bounded subset of M, f is in
 AB(R)(F), and

 M = a function from F into H , J a£ exists ļ .
 With reference to establishing the conditions of the hypothesis of Theorem

 3.1 for the above collection, we refer the reader to [2] as well as section 2 of this
 paper for the differential equivalence (see also [5]) consequences and closure
 properties that imply them.

 We now continue our discussion of the theorems of this paper.
 We show the following functional equation theorem (see section 4) :

 Theorem 4.1 Suppose that each of £ i and £2 is in A(R)(F) and M C A(&)
 for i = 1,2, so that j4(£i) = Afa)- Suppose that M satisfies the hypothesis of
 Theorem 3.1. Suppose that if i = 1,2, then A, is an element of M such that
 for each V in F ,

 Jv 'm - MJ)| = inf ļ jí MI) - ,(/)! : r, in m| .

 It follows that if Q is max or min, then /nQ{£i,£2} exists, M Ç A(f Q{£ 1,62})
 (see Theorem 2.2) and for each V in F,

 Jv I jí Q{6(^),6(^)} - jí A2(J)} =

 infjjí IjÍQUxíJ),^^)}-^/) : 77 in .
 We conclude the paper with a converse to Theorem 4.1 in the form of the
 following decomposition theorem:

 Theorem 5.1 Suppose that each of £ 1 and £2 is in A(1Si)(F) and M Ç A(f¿)
 for i = 1,2., so that j4(£i) = ^(£2)- Suppose that if £ is £1 or then (£, M)
 satisfies the hypothesis of Theorem 3.1. Suppose that p is in M , Q is max or
 min and for each V in F ,

 XI/q{6(j),í2(,7)}"p(/) =inf{XI/^i(j)'6(j)}-"(/) :v€M}-
 Then for i = 1,2 there is //,• in M such that
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 V P = J Q{m 1,1*2} and

 ii) for i - 1,2 and each V in F,

 jv &(/) - W(J)| = inf { |6(/) - 7,(7)1 : 77 € m| .

 2 Preliminary Theorems and Definitions

 If V is in F , then the statement that D is a subdivision of V means that D is
 a finite collection of mutually disjoint sets of F with union V. The statement
 that E is a refinement of H , denoted by "E « H" ' means that for some V
 in F, each of E and H is a subdivision of V and each element of E is a subset
 of some element of H .

 We shall let r(F) denote the set of all functions from F into exp(K). If
 a is in r(F), V is in F and E « {V}, then the statement that 6 is an a -
 function on E means that 6 is a function with domain E such that for each I

 in E y b(I) is in a(/).
 As stated in the introduction, in this paper all integrals shall be refinement-

 wise limits of the appropriate sums; thus, if a is in r(F) and V is in F, then the
 statement that K is an integral of a on V means that K is in R and if 0 < c,
 then there is D « {V} such that if E « D and 6 is an a - function on E,
 then IK - J2E M-OI < c"> K unique and is denoted by fv a(/), fv a(7), Jv a,
 etc. We refer the reader to [2] for the basic properties of these set function
 integrals, as well Kolmogoroff 's [5] notion of differential equivalence and some
 of its immediate consequences, which shall be used in this paper, and of which
 we shall give a brief listing following Definition 2.1 and Convention 2.1 below.

 We digress briefly for the following definition and convention.

 Definition 2.1 Suppose that S is a set, each of f and g is a function from S
 into a collection of sets, and w is a function such that

 (Range union)(f) x (Range union)(g) Ç Dom(w).

 Then

 w(f,9) = {(<,w(*>!/)) •' t in S, {x,y) in f(t) x g(t)}.

 Convention 2.1 If S is a set and h is a function from S into M, then, for
 certain purposes in this paper, we shall regard h as " equivalent " to {(ť, {h(t)}) :
 t in S }; we shall, at times, combine u set-valued " and "single- valued" functions
 in accordance with this convention and above definition .

 For D « {ñ}; we let r(D)(L)(F) denote the set to which a belongs iff
 a is in r(F) and : E << D, b an a - function on E} is bounded.
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 For each D « {Í2} and ß in r(D)(E)(F) we let Lo(ß) and Gn(ß) denote,
 respectively , the function with domain F such that for each V in F, Lj^(ß)
 and Gp(ß) ore the sup and inf respectively , of the (consequently) bounded set

 < ^ b(I ) :E a subset of a refinement of D,E « {V},
 ^ E

 baß - function on E}.

 Theorem 2.1 Suppose that D « {ß}, and suppose that each of a, ß and 7
 is in r(D)(E)(F). Then the following statements are true.

 1) If V is in F, P « { V }, Q « {V} and H is a refinement of each of
 P and Q, then

 £Gd(«)(/) <^GD(a)(J) <$>!>(«)(/),
 P H H Q

 so that we have the following existence and inequality :

 f G D (a)(1) < í LD(a)(I),
 Jv Jv

 equality holding iff fv a(I) exists , in which case fv Gd (a)(1) = fv &(I) =
 fvLD(a)(I).
 2) If a exists, then, for each V in F fv a exists and f a, which denotes

 {(^ fv *) • V in F} is in A(TH){F).
 3) If fna exists, then fū 'a(I) - Jfa | = 0, i. e., if 0 < c, then there is

 D « {fì} such that if E « D and a is an a-function on E, then |a(/) -
 //«I < c.

 4) Ifv is r(F) and has bounded range union, then fn |i/(/)||a(/) - or| = 0,
 so that if V is in F , then fv i/(I)a(I) exists iff fv v (I) ff a exists, in which
 case equality holds.

 5) If Q is max or min and each of /n ß and fn 7 exists, then

 [ 'Q{ß(I),i(I)} -Qif ß> Jl [ 7} I = 0, J Ū JI Jl

 so that ifV is in F, then fv Q{ß(I), y(I)} exists iff fv Q{fj ß, fj 7} exists,
 in which case equality holds.

 We now discuss some inequalities and their integral existence implications.
 If 5 is a finite set and each of / and g is a function from S into M , then

 ^min{/(x),<7(x)} < min-ļ ]P/(x), s l s s J
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 < maxj^/(x),5^(x)| < 5^max{/(*),ý(*)}. I S s ) s

 This implies that if V is in F, D « {V}, E « D , H « D and each of tj
 and C is in A(R)(F ), then

 ^min{r/(J),C(^)} < ]^min{ 77(7) ,<;(/)}
 E D

 D H

 so that fy min{y;(J),^(J)} exists iff {^p{mm{?7(J), Ç(J)} : P « {V'}}
 is bounded below, and fv max{Tj(J)X(J)} exists iff {%2p niax{77(J), C(J)}
 P « {V}} is bounded above.
 We now prove an integral existence theorem for elements of A(iïk)(F).

 Theorem 2.2 If each of tj and Ç is in A(R)(F), then the following three
 statements are equivalent :

 1) There is £ in A(1H)(F) such that each of tj and £ is in

 2) IfV is in F y then fv max{rj(I)X{I)} exists , and

 3) IfV is in F , then fv min{Tj(I)X{I)} exists.

 Furthermore , in case 1) each of f max{TjX} and f min{rjX} is in A(£).

 Proof. Suppose that 1) is true and Q is max or min. Suppose that V is in
 F. If E « { V }, then

 I^Q^(/),c(/)}| = |[£<?w7) -w),ai) -*(/)}] + w)'
 E E

 < E WW) - ŚW.cw - f (mi + wy
 E

 < + (ç leu) + 'm'
 - (X m ~i(J)i) + (X m ~m ) + imi

 Therefore fv Q{tj(I)X{I)} exists. Therefore 1) implies each of 2) and 3).
 Suppose that 2) or 3) is true. Let Q = max or min and £ = f Q{tjX}- We

 immediately see that each of £ - rj and £ - C is in AB(R)(F)y so that each of
 tj and C is in >1(0- Therefore each of 2) and 3) implies 1).
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 Therefore 1), 2) and 3) are equivalent.
 Again, assume that 1) is true and Q = max or min. Suppose that E «
 {«}. Then

 E E =E| E jQiiV)-tV)>CV)-tV)} E E

 < E (/ - Í(- /)i + 1 - *oi)

 = Jn / |^(j)-í(j)|+ Ja / |C(J)-€(7)|- Jn Ja

 Therefore f Ç{t/,C} is *n ^(0- ^
 We now prove a theorem involving upper and lower integrals and the op-

 erations max and min.

 Theorem 2.3 Suppose that D « {iì} and each of a, ß, min{a ,/?} and
 max{ a,/?} is in r(D)(E)(F). Then, ifV is in F and(P,Q) is either (Ģd, rnin)
 or ( Ld , max), then the following existence and equality holds:

 Jv ( P(Q{a, /?})(/)= Jv / Q{P(a)(/),P(/?)(/)}. Jv Jv

 Proof. W.l.o.g. let (P, Q) = (Lu, max) = (L,max). Suppose that W is in
 F . First, if E « {W} and E is a subset of some refinement of D , then

 Emax{I(a)(/),Z,(^)(/)} < ^ £(max{a, /?})(/) < L(max{a,ß})(W),
 E E

 so that

 L(max{L(a),L{ß)}){W) < L(mzx{a, ß})(W) < L(max{L(a),L{ß)})(W),

 so that

 (2.1) L(max{L(a), L(ß)})(W) = L( max{a, /?})(W).

 Secondly, if V is in F and E « { l'" } , then

 ^ E ļ 1 L(m&x{a,ß})(J) E ^ ^ E 1

 = [ L(max{a,/?})(J), Jv
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 so that from this, differential equivalence and (2.1), we have, respectively, the
 following existence and equality:

 jf ma x{L(a)(I),L(ß)(I)} = jf L(max{L(a), L(ß)})(I)

 = f L{max{a,ß})(J). Jv

 Therefore fv L(max{a,/?})(J) = fv max{L(a)(7), !(/?)(/)}.
 The argument for G d and min follows in a similar fashion.

 3 ' A Closest Approximation Theorem for Subsets
 of A(R)(F).

 Lemma 3.1 Suppose that £ is in A(R)(F), M Ç A(£) and ifV is in F and is
 not Í2 and each ofr] and £ is in M , then + is in M . Suppose thatuj
 is the function with domain F given byu(V) = inf{fv '£(I) - v{I)' : V *n M}.
 Then w is in AB(M)(.F)+.

 Proof. Obviously u is nonnegati ve- valued.
 Now suppose that V and W are mutually disjoint sets of F . If r; is in M,

 then

 u,(v)+u(w)< f m-v(i) i+ [ m-r)(i)'= f ií(/) -«?(/)!• Jv Jw JVvW

 Therefore w(V) + u(W) < w(V U W).
 Suppose that 0 < c. There is 17 and C> each in M , such that fv |£(7) -

 »7(7)1 < w(F) + c/2 and fw |£(7) - C(7)| < w(W) + c/2, so that, if A =
 rfy 1 + £tn-v']) then, since A is in M and W Ç fi - V, it follows that

 u(VUW)< f K(/)-A(I)|= f |£(7) - A(/)| + f |Í(7)-A(7)| Jvuw Jv Jw

 = I K(7)-|?(7)|+ / |£(7) - C(7)| < w(V) + c/2 + u(W) + c/2, Jv Jw

 so that u> ( y U W) < u (y) + u ( W) + c. Therefore u(V)+u(W) <u{Vl)W) <
 w(V)+u{W), so that w(VU W) = u(V)+u(W). Therefore w is in AB(R)(F)+.
 Proof of Theorem 3.1 Let w be the function with domain F given by

 u{V) = inf I |£(7) - »7(7)1 : jj in M | .
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 By Lemma 3.1 it follows that w is in AB(īk)(F)+, so that if r¡ is in M, then
 /K-ņ|-wisini4B(R)(F)+.

 There is a sequence of elements of M such that for each n,

 so that if V is in F, then ( fv |£(J) - 77^ (/) |) - v(V) < 2~(n+1). For each
 n there is, by hypothesis and induction, a sequence {^n}?Ln °f elements of
 M such that /ijļ = r¡n and, if n < m, then /i™+1 = /max{77m+i, /x™}. It is
 obvious that for each positive integer n and m with m > n, - ß™ is in
 AB(m)(F )+. It also follows routinely that for each positive integer n and m
 with m > n + 1, ß™ - is in j4¿?(®)(F)+.

 Suppose that n is a positive integer. For each V in F ,

 (jf -u(v)<2-(n+ii
 Suppose that h is a positive integer> n such that for each X in F,

 (J ^ m - - u(x) < £ 2-(fc+i). ^ k-Tl

 Suppose that V is in F . Then

 Jv I m - ^+1(/)l = ļ m - max{^+1(/),^(/)}|.

 Suppose that D « {V}. Let D' = {I : I in D,7//l+1(/) < //£(/)} and P' =
 U d'I. Then

 £fc(J)-ma x{r1h+1(I),rì(I)}' = y£m-rt(I)'+ £ 'Í(I) - r,h+l(I)'
 D D' D-D '

 <E/ l^)-A«n^)l+ E í W) -1k+l(J)'
 D' D-D'

 = / W)-ti(J)'+l W)-m+i(J)'
 JP> JV-P'

 < 2-(fc+1^ + uj(P') + 2"C,+2) + u(V - P') = 2-(fc+1^ + u(V).
 It therefore follows that /„ |{(/) - ^+1(/)| < (Efc=n 2-<fc+1)) + w(V). There-
 fore, if m is a positive integer > n and V is in F, then fv |£(/) - ß™(I) ' <
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 Suppose that n is a positive integer. We first show that if V is in F and m
 is a positive integer > n, then n™(V) < /2™+1(V) < 2~n + u>(V) + f (V). The
 first portion of the inequality has already been established. Again, suppose
 that m is a positive integer > n and V is in F . Then

 i£(v)=i£{v)-i(v)+t{v)< Í m-œw'+uv)
 Jv

 < 2-tfc+1> j + w(V) + Z(V) < 2-n + «(V) + {(V).
 Let An be the function with domain F given by

 An(V) = sup{/i™(V) : m a positive integer > n}.

 By hypothesis, An is in M . Furthermore, for each //¡J1, An - /1™ is in AB(M>)(F)+ ,

 so that for each V in F, fv |An(/) - /i™(/)| = An(V) - so that

 / m-*nW'< Jv Í K(/)-/C(/)i+ Jv / I^(/)-a„(/)I Jv Jv Jv

 < +u>(V) + 'n(V)-tf(V) ->-2-n+a>(K) + 0 asm^oo,

 so that fv |£(7) - An(7)| < 2"" +u(V).
 We see that if V is in F and n is a positive integer, then An(V) > An+i(V)

 and

 An(F) = Xn(V) - Í(V) + <ļ(V) > - f |A„(7) - í(7) I + *(V) Jv

 > -2~n - u(V) + {(V) > -1 - u(V) + i(V).

 Thus, let A' denote the function with domain F given by

 ''{V) = inf{A„(V1 : n a positive integer}.

 By hypothesis, A' is in M . Furthermore, for each n, A„ - A' is in AB(Hl)(F)+ ,
 and for each V in F, fv |A'(7) - A„(7)| = Xn{V) - A'(V), so that

 f Ič CO - A' (7)ļ < / lč(7) - A„(7)| + / |A„(7) - A'(7)| Jv Jv Jv

 < 2-n + w(V) + A„(F) - A'(V) -¥ 0 + w(V) +0asn-foo,

 so that u(V) < fv K(7) - A' (7) I < w(V),so that fv (7) - A'(7)| = u(V). □
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 Corollary 3.1 Assume the hypothesis of Theorem 3.1. Suppose further that
 ifO < c, then there is t) in M such that |£(J) - rç(/)| < c. Then £ is in M .

 Proof. By Theorem 3.1 there is A in M such that if V is in F , then

 J m - m' = inf m - «mi : n in M| ,

 which, from the hypothesis is clearly 0. Therefore |£(/) - A(/)| = 0, so that
 £ is À, so that f is in M .

 4 A Functional Equation

 In this section we prove Theorem 4.1, as stated in the introduction. We begin
 with three lemmas.

 The author wishes to thank the referees for their helpful suggestions con-
 cerning this paper, and one of the referees in particular concerning the follow-
 ing lemma.

 Lemma 4.1 Suppose that 0 < K, each of p, q, r and s is in M, p < q and
 'p - r| < 'p - s' + K. Then | q - max{ry s}| < 'q - s| -1- K.

 Proof. If r < s, then the conclusion follows immediately. So suppose that
 s < r. We then wish to show that 'q - r' < 'q - s' -f K , or equivalently,
 k ~ rl ~ s' ^ K- If r < then, clearly 'q - r| = q - r < q - s < 'q - s' + K.
 So next suppose that s <q<r. If p < s < q < r, then r - s = r - p-(s - p) -
 |r - p| - |s - p| < K , so that 'q - r ' - 'q - s' < 'q - r - (q - s)| = r - s < K.
 If s < p < q < ry then 'q - r' < 'p - r' < 'p - s' + K < 'q - s' -f K. Finally,
 suppose that q < s < r. Again, since p < q < s < r,

 r - s = r - p - (5 - p) = 'p - r' - 'p - s' < K,

 so that 'q - r' - 'q - s' = r - q - (s - q) = r - s < K. Therefore the inequality
 is true. □

 We now state an easy consequence of Lemma 4.1, giving a few remarks
 concerning justification.

 Lemma 4.2 If each of a, b, c and d is in M and 'a - c' < 'a - d' + K and
 |6 - d' < 16 - c| 4- K, then

 /..X . r r ,1 , ila - cl -h ifb<a
 (4.1) /..X 'max{a, . r 6} - max{c, r <i}| ,1 , < < M6 . - f ^ < b. k M6 - d' + /i, if f a ^ < b. k
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 and

 i a n' i / ii / ii i ^ i (fl "" cļ -f TC ļ if CL ^ b
 (4.2) i a n' i / M-mm{c,J}|<ļ|t_d| ii / ii i ^ (fl "" cļ + -f ji ļ 1/Í£a if CL ^

 Remark The proof of inequalities (4.1) is a matter of routine substitution.
 Then one may use these inequalities in conjunction with the equation min{x, y}
 = - max{- X,- y) to establish inequalities (4.2); we leave the details to the
 reader.

 Lemma 4.3 Assume the hypothesis of Theorem Ą.I. Then there is a real
 nonnegative-valued function K with domain F such that

 1) faK{I) = 0 and

 2) If V is in F, i = 1, 2, j = 1, 2, and i ^ j , then

 16(f) - A, -(101 < 16(10 - + K{V).

 Indication of Proof. Suppose that V is in F, i = 1, 2, j = 1, 2, and i j.
 Then

 & w - a, • oo i = ofcoo -w) i - Jv / 'm-w)']1vi+ Jv [ i6(o-moi Jv Jv

 <|[ ]V' + Jv / 16(0 - A¿ (01 Jv

 = l[ ft'l + [(Jv 16(0 - Aj(0l) - I6(*0 - Ai(K)|]2j' + 16(10 -

 Let Ki(V) = |[ + [ ]y%- Then Jū Ki{V) = 0 by differential equivalence.
 For each V in F, let K(V) = I<i{V) + K2(V). □

 We now prove Theorem 4.1, as stated in the introduction.

 Proof of Theorem 4.1 . By Theorem 3.1 it follows that there is an element
 p of M such that if V is in F , then

 (4.3) - P(I)

 = inf |Qf Q{6(«0.6(-0}) ~»?(0 : »? in Afj .
 We shall freely use various immediate consequences of differential equiva-

 lence in this argument.
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 From Lemma 4.3 it follows that there is a real nonnegative- valued function

 K with domain F such that fn K(I) = 0 and if i = 1, 2, j = 1, 2, i j and V
 is in F, then 16 (V) - A¿(V)| < |&(T0 - Aj(V)| + K(V). Suppose that V is in
 F. There is ¿=1,2 such that &(V) = Q{£i(V), ^(V")}. It therefore follows
 from Lemma 4.2 that

 (4.4) |Q{Íi(^),6(V)}-Q{AI(^),A2(V)}|< I&00- W)l + *00

 < [MV) - A.-(V)| - ļ I m - A,(/)||]3V + ļ MI) - Af(/)| + K(V)

 <[ }y+ Jv [ K.-(/)-/>(/)| + *00 Jv

 = [ ]'+[(/ Jv 'm - Pil) I - MV) - p(V)']4v + 16(10 - P{V) I + I<(V) Jv

 = [ ]v + [ ]t + IO{6(V),6(V)}-p(V)| + /f(V).
 Let us note that

 (4.5) /([ ]3y + [ ]4v+A'0/)) = 0.
 JŪ

 It therefore follows that if W is in in F, then, respectively by (4.3), then (4.4)
 and (4.5),

 Jw / |Q{6(/),6(/)}-p(/)| Jw

 </ Jw |<?{6(/),6(/)}-Q{Ai(/),A2(/)}|< Jw / |Q{6(/),6(/)}-^(/)l, Jw Jw

 so that

 Í ' f QitiVMiV)} - [ Q{A!(J),A2(J)} Jw 'Jl Jl

 = I '[Q{ii(J),b(J)}-p(J) Jw I Jl

 = inf { ļwĶļQ{ti{JM2(J)}j ~1(I) : *7 in M I .

 5 A Decomposition Theorem

 In this section we prove Theorem 5.1, as stated in the introduction. We begin
 with a lemma.
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 Lemma 5.1 Suppose that £ is in A(TSi)(F), each of r¡ and £ is in A(f) and ß
 is a function with domain F such that ifV is in F, then ßv is 77 or£. Suppose
 that a is a function with domain F such that ifV is in F , then ot(V) = ßv{V).
 Then the following statements are true :

 1) a is in r({ÎÏ})(£)(F).

 2) f L(a) is in A(£), where we let L = ¿{n}-

 3) 7/0 < c, then there is D « {íí} such that J2d Ii |(/j ^(a)) ~ <
 c.

 Proof. For each 7 in F, |£(7) - a(7)| < |*(7) - 77(7)! + |£(7) - C(7)|.If
 E « {Í2}, then

 |i(ß)-J3«(/)|< ^|i(/)-Or(/)|
 E E

 E E

 < Í K(/) -,(/)|+ / |i(J)-c(/)|. Ja Jn

 Clearly, then, 1) is true.
 Again, suppose that E « {ii}. Then

 E 't(V) - Jv [ L(a)(J)' E Jv

 E E E Jv

 EE Jū

 < í m-i(i)'
 Jū

 + í m-ai)'+L(«m-G(«m+L(a)(ū)- f 1(a)(7).
 Jet Jci

 Therefore 2) is true.
 We now show that 3) is true. Suppose that 0 < c. There is H « {iî}
 such that if i? is a subset of a refinement of H and fi is 77 or Ç, then

 E E I [f - J i(«)l] - W) - J £(«)( J)|| < c/4 E
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 and

 J] |I(a)(/)- Ji [ L(a)(J)'< c/4. E Ji
 Let N = the number of elements in H . For each V in H , there is E (V) « {V}
 such that L(a)(V) - <*(-0 < c/(47V) , so that

 E |I(a)(7)-a(7)|
 E(V )

 = ( £ 1(a)(7)] - ^ a(7) < L(a)(V) - E «O < c/(4tf).
 'ß(V) / B(V) E(V)

 Now, for each V in H, let E{V)X = {7 : 7 in E(V), 0(7) = 77} and E(V)2 =
 E(V)-E(V)i. Then

 EE JI f'(tm)-mw' 1 7 1 H E(V) JI 1 7 1

 =EE ||(//(»i)-'W+EE ' JI /|(//w)-cw 1 WJ 7 H E(V) ' H E(V)2 JI 1 WJ 7

 <EE K/¿(«)(j)) 1 ^ -»?(/) +E E K/^(«)(^)) 1 -cu) +C/2 /f £(V), 1 ^ ' H E(V)2 1 '

 <EE LV// Í (/ ^(«)(^)) - ¿(«)o + - »jwi ff £(V), LV// J

 + EE í LV// (/ £(«)(.J)) -£(<*)(/) + 11(a)(7) -C(7)|ļ J + c/2 H j Ē(V)2 LV// J

 <c/4 + E E IW(7)- 7,(7)1 + E EWW-CWI + C/2
 H E(V), // Ē(V)2

 = 3c/4+ E E lL(a)(7) - Û(J)I < Zc/4+Nc/(4N) = c.
 i/ E(V)

 Letting D = Uj/iī^K), we have the desired conclusion.

 Lemma 5.2 Suppose that {p, <7, r, 5} Ç R, 0 < K , |p - r| < |p - s| + and
 k ~ 5I < k - rl + K- Then ||p - r' - 'q - s|| < 'p - q' + K.

 Proof. W.l.o.g. assume that 'q - s' < 'p - r|. Then

 ||p-r|-|g-s||= 'p-r'- 'q - s'
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 < 'P - «I + K - |9 - s| < 'p - s - (q - s)| + K = 'p - g| + K.

 Lemma 5.3 Suppose that £ is in .í4(R)(.F), B « {Í2}, a is in r(B)ÇL)(F)
 and fn |£(/) - q(/)| exists. If P is Lb {a) or Gb(o), then f P is in j4(£) and
 for each V in F we get fv 'Ç(I) - P(J)| = fv |£(/) - a(/)|.

 Proof. W.l.o.g., let L = Lb{q) = P - There is D « B such that if E « D
 and a is in a- function on E , then l£(*0 ~~ a(^)l < * + /n If CO " aCOI-
 Suppose that E « D. Let N = the number of elements of E. For each I
 in E there is H(I) « {/} and an a- function a on H(I) such that L(I) -
 Y2h(I)û(^) < so that Ejst(/) 'l(j) "" a(^)l = E/f(/)(^(^) ~~ a(^)) ^
 L(I) - ^Zh(I) a(^) < so ^at.

 52m- Í £|<eEK(j)- Jj / L' E E H(I) Jj

 < E E m - a(J)i + E E wj) - L(J)i + E E w-n - Í L'
 E H(I) E H(I) E H(I) Jj

 <1 + [ |£(/)-a(/)| + JV/JV + L(n)- Í L.
 Jn Ja

 Therefore / L is in -A(£)-
 Now suppose that V is in F and 0 < c. There is D « {V} such that

 D is a subset of a refinement of B and such that if E « D and a is an a-

 function on E, then | fv |£ - a' - J2e 't(J) ~ a(«/)ll < c/8' I Iv K ~ I L' ~
 K(^) - 5jL''< c/8 and | fv L - J^e L(J)' < c/8. Suppose that E « D.

 Let N = the number of elements of E. For each I in E there is H (I) « {/}
 and an a- function a on H (I) such that L(I) - E//(j) a(^) < c/(8N) ,so that
 E*(/) 'm-a(J)' = T,H(i)W)-a{J)) < L(I)-ZH{i)a(J) < c/(8N),So
 that

 IX' 'l
 < /|<- /¿i -EE IW) -//i JJ E H(I) JJ

 + E E - I L' - E E - w)'
 E H(I) Jj E H(I)
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 + E E - E E - a(J)i
 E H(I) E H(I)

 + EEK(J)-a(J)i- JV / fc-ai E H{I) JV

 < c/s + E E w) - i L) + E E w) - <J)) + c/8
 E H(I) Jj E H(I)

 < c/8 + C S L + Nc/{8N) + c/8 < 4c/8 < c.
 E H(I) Jv

 This establishes the conclusion for P = Lb{(*)' the argument for P = Gs(a)
 follows similarly. □

 We now prove Theorem 5.1, as stated in the introduction.

 Proof of Theorem 5.1 We shall let Q = max. For i = 1,2, there is A(- in M
 such that if V is in F, then |&(<0 - Ki^)' = l&(-0 ~~ ^(-Ol : *n ^0-
 Clearly, for i = 1,2, & = / min{&,/ max{£i,f2}}- Therefore, for i = 1,2 and
 each V in F

 -IM I max{í!,í2}} - jímin{AÍ(J),p(J)}| ,
 which, by Theorem 4.1 is

 inf I jí |^min{6(Jr),^max{£i)£2}} - »?(/) : »7 in m|

 = inf |&(/) - *?(/) I : »7 in M ļ .

 Letting, for i = 1,2, A, = f min{A¿,p}, we see that p - A, is in AB(lBt)(F)+
 and for each V in F, fv |&(/) - A¿ (/) | = inf{/v | &(/) - rj(I)' : 77 in M}. For
 z = 1,2, j = 1,2, and i ^ j, let Si denote the function with domain F given
 by

 {Si)y = ip>
 1 A i, otherwise.

 and ji denote the function with domain F given by 7 ,■(/) = (J,- )/(/). By
 Lemma 5.1, 7 ¿ is in r({fì})(E)(F) and / L(ji) is in
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 Now suppose that i = 1,2, j = 1,2, i ^ j and I is in F. If &(/) =
 then ma x{7t(J), 7,(7)} = max{p(J), />(/)} = p(/). If &(/) > £,(/), then

 max{7,-(/),7iý(/)} = max{p(/), A¿(/)} = p(I). Suppose that i = 1,2. We show
 that for each V in F we have the following existence and equality:

 jv IfcW - 7,(7)1 = inf 16(7) - »7(7)1 : f] in m} .

 First, by Lemma 4.3, letting fï = /max{£i,£2}> £2 = -M = P anc* ^2 =
 we see that there is a real-nonnegative- valued function K with domain F such
 that fnK(I) = 0 and for each I in F ,

 |Qmax{6(J),6U)}) -P(/) < (jimax{6(J),6(J)})-Ai(7) +ff(J),

 and I &(/) - A,-(/)| < |&(/) - p(/)| + K{I), so that by Lemma 5.2,

 ||(^max{6(/), &(/)}) -p(/)| - |£(7) - A,(7)||

 < |( jimax{6(7),6(7)}) -fc(7)| +tf(7).

 We shall use the routinely established inequality ||a+6| - |c|| < |a|+||6|- 'c''.

 Now suppose that i = 1, 2, j = 1, 2, 1' ^ j and V is in F . Suppose that
 E « {V}. Let Ei = {/ : / in E, fc(J) > £¿(/)}and E2 = E-Ei. Then

 £ 11.(7) - 7,(7)1 -2>(7)- A, (7)1
 £ £

 = £[|max{6(7),6(7)} - p(I)' - |fc(7) - A,(7)|]
 Ex

 < £||max{6(7),í2(7)} - j I max{6(<7), &(./)} Ei I

 + (Jma x{6(J), &(./)} - p(7)) I - |6(7) - A,(7)||
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 < £lmax{£i (/),&(')} - j ^ ma.x{^i{J),^2(J)}'^ E' ^

 +12 ||(^max-féi(J)>&(^)}) -/>to| - i&co-M-oiļ

 ^ ]i+EÌ|(/ m**{ti(j),w)})-m'+K{n
 Ei *■ 1 J

 = [ li + E ( ^ Jl /max{6(^),6(^)}) -max{6(/),6(/)} + £#(/) Ei ^ Jl ' Ei

 <2^ ^ma.x{Çi{J),t2{J)}j - max{ti{I),Ç2(I)} +^2^(1).

 Clearly, these inequalities suffice to show that we have the following existence
 and equality:

 / |&(/)-7i(/)l= / |6(/)-At(/)|=inf{/ |6(/)-ņ(J)|:ņinM}, Jv Jv Jv

 so that by Lemma 5.3,

 jf |fc(J) - J L{-fi){J)' = Jv 1 &(/) - 7i(/)| = ini{1 |6(7) - ņ(/)| : r, in M}.

 Suppose that 0 < c. By Lemma 5.1 there is D « {íí} such that

 (5-1) ^lULhi))-{Si)l{J) <C'
 Let Di = {/ : / in D, = p}, D2 = D - Dx and W = Up, /.Then pW +
 ^[n-w] -g jn ancj from (5.1) we have that

 = i (//w) - 'wi + ç i I (//w) - Ai «

 = Ja ļ ¿(7.-)) - [p™ + Aļn"^]( J) .
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 It therefore follows from Corollary 3.1 that f £(7,) is in M.
 It remains to be shown that p = f max{f ¿(71), f L( 72)}- This is al-

 most immediate, for p = f p = f max{7i,72} = /Lmax{7i,72}, which by
 Theorem 2.3 and statement 5) of Theorem 2.1, is /max{L(7i), ¿(72)} =
 /max{/£(71),/ 1,(72)}.

 The argument for the case Q = min is similar to the above, involving
 mainly a judicious interchange of max and min, a replacement of > with < in
 the definition of the its and the replacement of L with G in the final portion
 of the argument.
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