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 Abstract

 This survey article gives a history of the development of the theory
 concerning restriction theorems in real analysis. The discussion will span
 the history from Lusin's Theorem through very recent results concerning
 intersections of Lipschitz, smooth, and Holder class functions.

 1 Introduction

 This article is based on an hour lecture given at the Southeastern Section
 Meeting of the Mathematical Association of America, held at Carson Newman
 College in Jefferson City, Tennessee, April 8-9, 1994. An expanded version
 was presented in two talks given at the Joint US- Polish Workshop in Real
 Analysis, held at the University of Lodz, Poland, July 11-19, 1994. The author
 acknowledges support of NSF Grant INT-9401673 which allowed him to attend
 the latter meeting.

 Section 2 gives an overview of the types of theorems to be discussed and the
 notation to be used. Section 3 includes a discussion of the classical restriction

 theorems, including (1) Lusin's 1912 and 1916 Theorems [30][32] about con-
 tinuous and derivative restrictions of Lebesgue measurable functions to sets of
 large measure, (2) Blumberg 's 1922 Theorem [3] about continuous restrictions
 of arbitrary functions to dense sets, and (3) Nikodym's 1929 Theorem [37]
 about continuous restrictions of Baire measurable functions to residual sets.

 In Section 4 attention turns to consideration of differentiate and smooth re-

 strictions of continuous functions. The theorems discussed in this section sug-
 gest certain differentiate restriction variants of Blumberg 's Theorem. Varia-
 tions on Blumberg 's Theorem are discussed in Section 5. Section 6 concerns
 continuous-, derivative-, and differentiable-restrictions of functions which are
 Borei-, Lebesgue-, universally-, Baire- , or Marczewski-measurable. Section 7
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 is devoted to a discussion of nice restrictions of Lipschitz, smooth, and Holder
 class functions. The focus is the recent paper by Olevskii (1994) [39], who gave
 the final solution to the "Ulam-Zahorski Problem". Section 7 also contains

 discussion of topological variants of the 1944 Lip 1 - C 1 Controlled Intersec-
 tion Theorem of Federer [18] and the 1951 C ^ - C2 Controlled Intersection
 of Whitney [47].

 Contributions on the part of the current author to various parts of the
 theory are included, of course. A list of unsolved problems is presented as the
 discussion unfolds.

 2 Overview and Notation

 The four types of "Restriction Theorems" that will be considered throughout
 the article will be described first. Some classes of functions / : [0, 1] - > M

 ... ->X -> Y -> ... ,

 will be given, where the means "Ç" or "=>" , depending on whether X and
 Y represent collections of functions or the notations for properties of functions
 /:[0,1]->R.

 The discussion will be concerned primarily with the following four types
 of theorems.

 Restriction Theorem. For every f £ Y , there exists a fairly large N Ç
 [0, 1] such that the restriction f'N G X(rel N).

 Of course the property which defines the class X must be such that there
 is some natural interpretation of the property when used to define the class
 X(rel N) of functions with domain N. Better than a simple Restriction
 Theorem would be the following.

 Intersection Theorem. For every f G Y , there exists a g £ X and a fairly
 large N Ç [0, 1] such that f'N = g'N.

 This is referred to as an Intersection Theorem because the conclusion is

 equivalent to saying the the projection of the intersection, 7Ti (f O g), contains
 the set N. Also better than the simple Restriction Theorem would be the
 following type of theorem which indicates an ability to control the location of
 the set N to which the function is to be restricted.

 Controlled Restriction Theorem. For every f G Y and every reasonably
 large M Ç [0, 1], there exists a fairly large N Ç M such that f'N G X(rel N).

 The strongest of the types of theorems to be considered would be the
 following.



 512 Jack E. Brown

 Controlled Intersection Theorem. For every f £Y and every reasonably
 large M Ç [0,1], there exists a g EX and a fairly large N Ç M such that
 f'N = g'N.

 The meanings of the "large" notions will vary. Sometimes it will mean
 large in cardinality, sometimes it will mean large in some measure theoretic
 sense, and sometimes it will mean large in some topological sense. The nota-
 tions which will be used for various measure theoretic and topological notions
 referred to throughout this article will now be given. It is assumed the reader
 is somewhat familiar with the definitions. They can be found in [23], [25], [26]
 and elsewhere, of course.

 Some of the measure theoretic classes of sets which will be referred to are

 the following. L will denote the collection of all Lebesgue measurable subsets
 of [0,1]. Lo = {subsets of [0,1] of measure zero}. non-Lo = {subsets of [0, 1]
 of positive outer measure}. L ' Lo = {subsets of [0, 1] of positive measure}.
 co-Lo = {subsets of [0, 1] of full measure}.

 Some of the topological classes of sets which will be referred to are the
 following. ND = {nowhere dense subsets of [0,1]}. FC = {first category
 subsets of [0,1]}. non -FC = {second category subsets of [0,1]}. co -FC =
 {residual subsets of [0, 1]}. Bw denotes the collection of all subsets of [0, 1]
 which have the Baire property (in the wide sense) (i.e. the sets which have a
 first category symmetric difference with some Borei set). Bw ' FC = {second
 category sets with Baire property}.

 The analogies that are customarily considered to exist between these mea-
 sure theoretic notions and the corresponding topological notions will be em-
 braced throughout this article. These analogies are listed in the following
 table.

 SOME ANALOGIES:

 Topological Measure Theoretic
 Basic a- algebras: Bw L
 Very Small: ND

 Small (cr-ideals): FC Lo
 Large: non-FC non-Lo

 Larger: Bw ' FC L'L0
 Largest: co- FC co- Lo
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 3 The Classical Theorems

 Consider the following classes of functions / : [0, 1] -ł I (C denotes the class
 of continuous functions).

 ¿-measurable

 / '
 C arbitrary
 ' /*
 Bw -measurable

 The best known restriction theorem in real analysis is Lusin's Theorem
 about continuous restrictions of Lebesgue measurable functions, which can be
 found in almost any first year graduate analysis text.

 (Lusin's First) Theorem 1. For every L-measurable f : [0, 1] - ► M, there
 exists an M £ L'Lq such that f'M G C(rel M).

 This theorem was stated by Lusin in 1912 [30], but it was known earlier
 by Lebesgue [28], Borei [4], and Vitali [45]. The current author thanks John
 Morgan III for providing him with these references. The theorem is usually
 stated in stronger "controlled intersection theorem" form in most text books,
 and it is pointed out that you can make the measure of the set M be as close
 to 1 as is desired. However, one cannot choose M G co- Lo in Lusin's Theorem
 (this fact provides for the current author's favorite homework problem to as-
 sign in first year graduate analysis courses). On the other hand, Lusin showed
 in 1916 that one could obtain a set M of full measure if one is willing to relax
 a bit on the niceness of the restricted function.

 (Lusin's Second) Theorem 2. For every L-measurable / : [0,1] -4 Ë,
 there exists an F G CaeD 1 and an M G co-Lo such that f'M = F''M .

 CaeD 1 denotes the class of continuous functions which are almost every-
 where differentiable. This theorem might be referred to as "Lusin's Derivative
 Restriction Theorem" .

 The second most well-known restriction theorem in real analysis is proba-
 bly Blumberg 's Theorem about continuous restrictions of arbitrary functions,
 which was proved [3] in 1922.

 (Blumberg's) Theorem 3. For every f : [0, 1] -> M, there exists M Ç
 [0, 1], M dense in [0,1] such that f'M G C(rel M).

 It is clear from reading proofs of this theorem that the set M which is
 constructed in the proof, while dense in [0, 1], is nevertheless countable. Is was
 known in the 1920 's that the set M could not be made to have cardinality c
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 (cardinality of the continuum), because of the "Sierpinski-Zygmund function"
 [43] / : [0, l] - y M. which has no continuous restriction to any set of cardinality
 c.

 Possibly the third best known restriction theorem dating to the 1920's is
 the following theorem proved by Nikodym [37] in 1929.

 (Nikodym's) Theorem 4. A function / : [0, 1] - ► M is Bw~measurable if
 and only if there exists M G co-FC such that f'M G C(rel M).

 The class of functions in the conclusion of Theorem 4, called the "func-
 tions with the property of Baire" , was studied earlier. Nikodym defined the
 collection Bw and showed that it was a cr-algebra which could be used to
 characterize those functions. Nikodym's theorem was proved in the general
 separable metric setting by Kuratowski [24] in 1930.

 4 The Continuous Case

 In this section, the restriction and intersections theorems concerning the fol-
 lowing collections of functions are considered.

 A C°° -»

 A denotes the class of real analytic functions. The classes C°°, Cn, and
 Dn denote the infinitely differentiate, n- times continuously differentiate, and
 n-times differentiate functions, respectively. The class "D1" is the collection
 of continuous functions which are differentiate in the "extended" sense (i.e.
 +00 and - oo are allowed values of /'(x)). To appreciate the significance
 of the theorems to be discussed below, one must remember how badly non-
 differentiable functions / G C can be. The most common continuous nowhere
 differentiate function one finds discussed in most real analysis texts would be
 the function described by Weierstrass in 1875.

 oo

 f(x) = y; ancos(bn7Tx)
 n- 0

 where 0 < a < 1, 6 is an odd integer, and ab > 1+(|)7t.
 Other texts would include a description of the function described by van

 der Waerden in 1930.

 OO -

 /(*) = E 0^(12"*)
 n- 0

 where g is the "distance to nearest integer" function.
 Both of the above functions are nowhere "Z)1" but they do have 1-sided

 "D1" points. Indeed, this behavior is "typical" of functions / EC, in the sense



 Restriction Theorems in Real Analysis 515

 that the set of functions which are not like this forms a first category subset
 of C, topologized with the sup norm. Examples due to Besicovich (1925) and
 Morse (1938) are worse than the Weierstrass and van der Waerden functions
 in that they are nowhere 1-sided "Dl" . See chapter 7 of the book by Jeffery
 [23] for an expanded discussion of continuous nowhere different iable functions.

 Nevertheless, continuous functions do have nice restrictions to perfect sets.
 A set is perfect if it is closed and has no isolated points (e.g. closed intervals,
 Cantor sets, and closed unions of such sets). Such sets are considered to
 be large in the sense that they must have cardinality c. The following was
 probably known to many mathematicians in the 1930's or 40's.

 (Folk) Theorem 5. For every f € C, there exists a perfect P Ç [0, 1] such
 that f'P = g'P for some g € D1.

 The current author is unable to provide a reference to this result, but
 it would have followed from Lebesgue's 1904 Differentiability Theorem [29],
 Jarnik's 1923 Differentiate Function Extension Theorem [21], and known re-
 sults concerning nowhere monotone functions such as those given in 1940 by
 Minakshisundarum [35] (also see [40]). It would also have been known at that
 time that you can't choose the set P in the above theorem to be in L ' Lo
 because of pathological nondifferentiable continuous functions described by
 Jarnik [22] in 1934.

 At about that time (early 1940's), Ulam asked [Scottish Book Problem
 17.1] (see [44]) whether every continuous function agrees with some real ana-
 lytic function on some uncountable set. Zahorski showed in 1947 [48] that the
 answer is no because there exists a C°° function which has only finite inter-
 section with every real analytic function. Zahorski raised the natural question
 concerning intersections of continuous functions with functions in smoother
 classes, and this became known as the

 Ulam- Zahorski Problem. If f £ C, does there necessarily exists a perfect
 P Ç [0, 1] and age C°° (or Cn or Dn) such that f'P = g'P?

 The fact that Zahorski stated the question as being open in the D 1 case
 would indicate that he was not aware of Theorem 5 stated above.

 A theorem which does not provide a solution to the Ulam-Zahorski Problem
 but which was a step in the positive direction was proved by Bruckner, Ceder,
 and Weiss [14] in 1969.

 Theorem 6. For every f € C and every perfect P Ç [0, 1], there exists a
 perfect Q Ç P such that f'Q E 11 D 1 "{rei Q).

 This theorem would be referred to as the C - "D1" Controlled Restriction
 Theorem. The quotation marks are necessary in the notation for the differ-
 entiability class because the set P could be of measure zero, in which case it
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 is possible that f'P could already have all derivative values = +00. A nice
 alternative proof of the above theorem wa s given by Moray ne [36] in 1985.
 The following theorem includes a contribution to the solution (in the pos-
 itive direction) to the Ulam- Zahorski Problem. It is the current author's fa-
 vorite theorem.

 Theorem 7. For every perfect P G L' Lo and every f £ C, there exists a
 perfect Q Ç P such that

 0) f'QeC°°{rel Q), and

 (ii) f'Q = g'Q for some g G C1.

 Theorem 7 with conclusion (i) was proved by Laczkovich [27] in 1984 and
 would be called the C - C°° Controlled Restriction Theorem. Theorem 7 with

 conclusion (ii) was proved by Agronsky, Bruckner, Laczkovich, and Preiss [1]
 in 1985 and would be called the C - Cl Controlled Intersection Theorem. The
 latter result represents a step in the positive direction toward the complete
 solution to the Ulam-Zahorski Problem. The proof of this part of the theorem
 involves restricting down to a perfect set Q in such a way that the 1934 Whit-
 ney Extension Theorem [46] is satisfied so that one can conclude that f'Q is
 extendable to some g G C1. The authors show by example in [1] that the
 function g of part (ii) cannot be chosen to be G C 2 (or even D 2). However,
 this still leaves open whether or not one can go further in the positive direction
 in the solution to the Ulam-Zahorski Problem. Indeed, the authors raised the
 following question: if f G C, does there exist a perfect PC [0,1] and a g G C2
 such that f'P = g'P? The answer to this question was provided by Olevskii
 in 1994, and his paper is discussed in the Section 7.

 The nature of part (ii) of Theorem 7 suggested to the current author that
 there should be a similar conclusion which could be added to Theorem 6.

 Consider the following classes of functions.

 "C1"
 Z1 '

 C 1 "D1" -► c
 ' S

 D 1

 where the class "C1" is the collection of those functions / G "Z}1" for which
 the derivative /', considered to be an extended real valued function, is contin-
 uous in the extended sense. The following C - "C1" Controlled Intersection
 Theorem was proved in 1990 [10].

 Theorem 8. For every f G C and every perfect P Ç [0,1], there exists a
 perfect Q C P and a g £ "C1 ;; such that f'Q = g'Q.
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 The proof of Theorem 8 required first proving a new "C1" variant of the
 Whitney Extension Theorem in the real case.

 It is not difficult to show (see [12]) that a partial converse to Theorem 7 (ii)
 holds in that if M E Lo, there is an f EC such that {x E M : f(x) = </(x)}
 is countable for every g E C1. The following is suggested as an open problem.

 Problem 1. Is it the case that for every set M Enon-Lo and every f E C}
 there exists an uncountable N Ç M such that

 (i) f'N EC°°(rel N), or

 (ii) f'N = g'N for some g EC1?

 5 Variations on Blumberg's Theorem

 Consider the relationship between Lusin's First and Second Theorems. He
 was able to obtain nice restrictions of Lebesgue measurable functions to sets
 of full measure by relaxing the "niceness" of the restriction from continuity to
 the condition of being a derivative in some sense. In 1971, the current author
 obtained a variant of Blumberg's Theorem which was of a similar flavor. As
 was pointed out earlier, one cannot choose the set M of Blumberg's Theorem
 to be of cardinality c, but the following theorem was proved in [6].

 Theorem 9. For every f : [0, 1] - > M there exists a set N Ç [0, 1], N c-dense
 in [0,1] such that f'N E PWD{rel N).

 N is c-dense in [0,1] if every subinterval of [0,1] intersects N in a set
 of cardinality c. The class, PWD , is the collection of functions which are
 "pointwise discontinuous" (i.e. continuous at the elements of dense subsets of
 their domains). The relationship between this class, the class, B1 , of Baire-
 1 functions (pointwise limits of sequences of continuous functions), and the
 class, A, of derivatives is indicated in the following diagram, which holds for
 functions with domains [0,1].

 C A - > Bl - > PWD arbitrary

 Of course, it would have been preferable to have f'N be in A (rei N) in
 the conclusion of Theorem 9 so that it would me more like Lusin's Second

 Theorem. However, it is not possible to obtain this. The reasons it would be
 impossible to obtain f'N E Bl(rel N) were discussed in [7] and the following
 relationship

 A {rei N) - ► Bl(rel N)

 for sets N which have no isolated points was established in [41].
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 It followed from a general version of Blumberg's theorem proved by Brad-
 ford and Goffman in 1960 [5] that the set M of Blumberg 's Theorem 3 could
 be chosen to fall inside any preassigned set K which is "categorically dense" in
 [0,1] (i-e. every subinterval of [0,1] intersects K in a non-FC set), thus yield-
 ing a controlled variant of Blumberg 's Theorem. It was actually shown in [6]
 that the set N of Theorem 9 could be forced to fall within any preassigned set
 K which satisfies a more complicated density property which involves Baire
 category and so-called "Lusin sets" [31] (uncountable sets which have only
 countable ND subsets).
 Whereas it was known that the set M of Blumberg 's Theorem could not
 be chosen to have cardinality c, it was only recently shown by S. Baldwin [2]
 in 1990 that it is consistent with the axioms of set theory that the set M in
 Blumberg's Theorem could always be chosen to be uncountably dense in [0,1].
 The C - "D1" Controlled Restriction Theorem 6 suggested the following
 variant of Blumberg's Theorem, which was proved by J. Ceder [16] in 1969.

 Theorem 10. For every function f : [0, 1] - > M and every uncountable
 M Ç [0, 1], there exists N Ç M , N bilaterally- dense-in-inself such that f'N £
 "Dl "(rei N).

 A set N is bilaterally-dense-in-itself if every point of N is a 2-sided limit
 point of N. A small error in the proof of Theorem 10 was corrected in papers
 by Holický, [20] and the current author [7]. The latter paper also contains
 a strengthened version of Theorem 10 in which the set N is forced to be
 "bilaterally-c-dense-in-itself" and the restriction f'N is "j D1"(re/ N) at each
 element of a dense subset of N (the requirement on M is stronger than just
 uncountability ) .
 The statement of Theorem 8 would suggest the possibility that there should
 be a Controlled "C1" Intersection variant of Ceder 's Theorem 10. This is an
 open problem, which is formulated as follows.

 Problem 2. Is it the case that for every f : [0, 1] -4 1 and every uncountable
 M Ç [0, 1], there exists N Ç M , N bilaterally- dense-in-inself such that f'N =
 <7|iV for some g € "C1 "?

 The statement of Theorem 7 would suggest the possibility that there should
 be a Controlled C°° Restriction variant and a Controlled C 1 Intersection vari-

 ant of Blumberg's Theorem.

 Problem 3. Is it the case that for every f : [0,1] - > M and every non-
 Lq M Ç [0, 1], there exists N C M , N bilaterally-dense-in-inself such that

 (i) f'N £ C°° {rei N) and

 (ii) f'N = g'N for some g G C1 ?
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 Additional variations on Blumberg 's Theorem can be found in [8] and the
 survey article [9] is the text of a talk the current author gave on the topic in
 1983 and contains 35 references on the subject.

 6 Measurable Functions

 A combination of Lusin's First and Second Theorems and Theorem 7 easily
 gets the following.
 Theorem 11. For every L-measurable f : [0, 1] - ► R,

 (1) there exists a perfect P € L ' Lo such that f'P G C(rel P),

 (2) there exists a co-Lo M and an F G CaeD 1 such that f'M = F''M , and

 (3) there exists a perfect PC [0, 1] such that

 (i) f'PeC°°(rel P), and
 (ii) f'P = g'P for some g 6 C1.

 Papers [11] and [13] by the current author and K. Prikry contain similar
 results concerning continuous-, derivative-, and differentiable-restriction the-
 orems and related examples for the immeasurable functions as well as the
 functions which are measurable with the respect to the following a- algebr as.
 B denotes the class of Borei sets. Br denotes the collection of sets M which
 have the "Baire property in the restricted sense" [26] (i.e. MOP £ Bw(rel P)
 for every perfect PC [0,1]). U denotes the collection of sets M which are
 "universally measurable" [34] (i.e. M is measurable with respect to the com-
 pletion of every Borei measure on [0,1]). (s) denotes the collection of sets M
 which are "Marczewski measurable" [33] [42] (i.e. every perfect P Ç [0, 1]
 contains a perfect subset Q Ç P which is either a subset of M or misses M ).
 The corresponding classes of measurable functions are related as follows.

 L-measurable

 U -measurable

 '
 ^-measurable (s)-measurable

 '
 Br -measurable

 '
 Bw -measurable

 The main theorems given in [11] and [13] are summarized in the following.
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 Theorem 12. For every Bw -measurable f : [0, 1] - y M,

 (1) there exists a co-FC set M such that f'P G C(rel M),

 (2) there exists a co-FC set M and an F G D1 such that f'M = F''M'
 and

 (3) there exists a perfect P Ç [0, 1] and a g G " C 1 " such that f'M = g'M .

 Theorem 13. For every (s) -measurable f : [0, 1] - ► ®,

 (1) there exists a perfectly dense set M Ç [0, 1] such that f'P G C(rel P),

 (2) there exists a perfectly dense set M Ç [0, 1] and an F G D1 such that
 f'M = F''M, and

 (3) there exists a perfect PC [0,1] and a g E "C1 " such that f'M = g'M .

 A set M Ç [0,1] is perfectly dense in [0,1] if every subinterval of [0,1]
 contains a perfect subset of M , so this condition is stronger than the condition
 of being c-dense in [0,1]. Theorem 13 (I) appeared in [13] and provided a
 positive response to a question raised in [17].

 Problem 4. There are numerous examples given in [11] and [13] which
 show (sometimes under assumption of the Continuum Hypothesis) that parts
 (1) and (2) of Theorems 11, 12, and 13 cannot be strengthened in various
 ways, even for U -measurable or Br -measurable functions. It would be nice
 to know whether these examples can be constructed without assumption of the
 Continuum Hypothesis.

 7 Lipschitz and Holder Class Functions

 The function classes to be taken up in this section are the following.

 C(2+a) C{ 1 + a) Lipa
 ' S ' s '
 c2 c 1 c
 S ' s ' s

 D 3 D2 D1

 where 1 > a > 0.

 / G Lipa if there exists a K > 0 such that 'f(y) - f(x) ' < K'y - x'a for
 all X, y G [0,1]. The Lipa classes get smaller with increasing a, Lip 1 being the
 smallest of these classes. C^1+or^ denotes the class of all / G C1 for which f
 is in Lipa . C(2+Qr) denotes the class of all / G C2 for which f" is in Lipa .
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 The "final solution" of the Ulam-Zahorski Problem was published in 1994
 by A. Olevskii [39]. This beautiful paper contains a number of extremely
 interesting results. Olevskii first describes an example of a function / G Lip 1
 such that for all a > 0 and every g G C(1+0f), / fl g is countable. Olevskii 's
 example is described as follows.

 J» X 00

 /(*) = I $3 bnr(vnt)<to
 J° n=l

 where r = the Rademacher function, defined by

 , x f - 1 for 0 < X < .5,
 r(x) v , ; x = <

 v ; 'l for .5 < X < 1,
 r extended so as to be periodic on M with period 1, 0 < 6 < 1, and vn
 increases rapidly toward +oo. Olevskii actually announced this and other
 results described below several years earlier than the proofs were published (see
 [38]). The current author worked out his own argument that the example given
 above satisfied the stated requirements. In the process of working this out it
 was noticed that with 6 = .1 and vn = nn!, for example, / O h is uncountable
 for some h G "C2" (see [11]). This suggested the following possibility.

 Problem 5. Is it possibly the case that every f G C (or Lip1) has uncount-
 able intersection with some h € "C2 " (or " D 2 ;;) ?

 The current author convinced himself that the above example also shows
 that functions in C cannot be expected to have uncountable intersections
 with functions in class D2i but no proof of this additional observation has
 been published. On the other hand, Olevskii went on to prove the following
 positive result related to the Ulam-Zahorski Problem.

 Theorem 14. For every f G Cl , there exists a perfect P Ç [0, 1] such that
 f'P = g'P for some g G C2 .

 Then Olevskii showed that you cannot go further up the Cn chain with
 similar positive results because of the following.

 Example 15. There exists f G C2 such that for every a > 0 and every
 geC^a' fDg is countable.

 Upon reading Theorem 14, the current author wondered "Why didn't
 Olevskii prove a C 1 - C2 Controlled Intersection Theorem instead of just
 the Intersection Theorem?" Possibly it could be shown, as was the case in
 Theorem 7 (if), that for every M G L ' Lq the perfect set P in Theorem 14
 could be chosen to lie inside M . This was not possible and an example to show
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 so was already given in [1]. Then perhaps one could accomplish this result
 for every co-Lo set M . A counterexample to this conjecture was constructed
 and is given in [12]. If large measure doesn't provide the control, perhaps one
 could accomplish the result if M is co -FC. This also turned out to fail and a
 counterexample is given in [12]. A condition was finally found which suffices
 and Olevskii's proof can be modified to yield the following C 1 - C2 Controlled
 Intersection Theorem [12].

 Theorem 16. For every f G Cl, and every M G Bw fi L which is simulta-
 neously measure-dense and residual in some subinterval of [0,1], there exists
 a perfect PCM such that f'P = g'P for some g G C2.

 M is measure-dense in an interval [a, 6] if every subinterval of [a, 6] inter-
 sects M in a set of positive measure. The examples mentioned above show
 that one can't weaken the requirements on M in Theorem 16 much and still
 obtain the conclusion. It is conjectured that the condition on M is exactly the
 right one in the sense that there will be a positive solution to the following.

 Problem 6. Is it the case that if M E Bw OL is not simultaneously measure
 dense and residual in some subinterval of [0,1], then there will exist an f £ C1
 such that for every g G C2, {x G M'f(x) = <7(x)} is countable?

 There is a proof of Theorem 7 (ii) which calls upon a theorem due to Fed-
 erer [18] (1944) which might be called the "Lip1 - C 1 Controlled Intersection
 Theorem". The proofs of Theorems 14 and 16 rely directly upon a generaliza-
 tion of Federer's theorem proved by Whitney [47] in 1951 and which might be
 called the "C^ - C 2 Controlled Intersection Theorem" . Those two theorems
 are the following.

 Theorem 17. For every f G D1 U Lip 1 and every M G L' Lo, there exists
 a g G C1 such that {iGM : /(x) = #(x)} G L ' Lo.

 Theorem 18. For every f G D2 U and every M G L ' Lo, there exists
 a g G C2 such that {x G M : /(x) = <j(x)} G L ' Lo .

 In [12], the current author proved the following topological variants of these
 two theorems.

 Theorem 19. For every f G Dl U Lip1 and every M G Bw ' FC, there
 exists g G C1 3 {x G M : /(x) = #(x)} is uncountable.

 Theorem 20. For every f G D2 U and every M G Bw ' FC, there
 exists g £ C2 3 {x G M : /(x) = <7(x)} is uncountable.

 It is the case that one can't get {x G M : /(x) = </(x)} G Bw ' FC in
 the conclusion of Theorems 19 and 20. Federer's Theorem 17 was actually
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 proved for functions which are continuous and almost everywhere pointwise
 Lip 1 rather than just for the functions in D 1 U Lip1 , but one cannot prove
 Theorem 19 for this larger class. Similarly, Whitney's Theorem 20 was proved
 for functions whose derivatives are continuous and almost everywhere point-
 wise Lip 1 rather than just for the functions in D2UC^2' but one cannot prove
 Theorem 20 for this larger class.

 A combination of Theorems 17 and 19 yields the following fact: If M E
 (L ' Lo) U ( Bw ' FC), then for every f G D1 U Lip1, there exists a g G C1 B
 {x G M : f(x) = </(x)} is uncountable.

 Problem 7. Is it the case that if M G Lo H FC, then there exists an f G
 D 1 fi Lip1 such that for every g EC1, {x € M : f(x) = ý(x)} is countable?

 Consideration of a similar combination of Theorems 18 and 20 leads to

 following question.

 Problem 8. Is it the case that if M G -Ło H FC, then there exists an
 f G D2 H C^ such that for every g G C2, {x G M f(x) = g(x)} is
 countable?

 Of course, if a positive solution is given for Problem 7, Problem 8 becomes
 moot.

 Finally, it should be pointed out that Whitney actually generalized Fed-
 ererà Lip1 - C1 Controlled Intersection Theorem to a C^ - Cn Controlled
 Intersection Theorem which is true for all n (see [19]). It is natural to ask if
 Theorems 19 and 20 can be extended to the general case.

 Problem 9. Is it the case that if M G Bw 'FC, then for every f G DnUC^n'
 there exists a g G Cn such that {x G M : f(x) = <7(x)} is uncountable?

 Final Remark. Bruckner and Jones have recently published an expository
 paper [15] on the subject of this article. However, the emphasis in the two
 papers is different. This would be indicated by the fact that, while the two
 papers do have 9 common references, the symmetric difference of the two sets
 of references is of cardinality 76.
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