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 ON GENERALIZED STOCHASTIC

 CONVERGENCE

 In what follows, let land Nbe the ideals of first category and Lebesgue
 measure zero sets in M, respectively. Jdenotes an arbitrary ideal of subsets of
 M . If a statement is true for all x E IR, with the possible exception of a set of
 points contained in an ideal J, then the statement is said to be true J-a.e. For
 any set A C M, its characteristic function is xa-

 It is well-known that if A is a measurable set, then the following three
 statements are equivalent:

 (A) a is a Lebesgue density point of A.

 (B) Xn(A-a)n(-i,i) -> X(-1,1) in measure.
 (C) For every increasing sequence mn £ N, there is a subsequence
 mnp such that Xmnp(A-a)n(-i,i) -► X(-i,i) N"a-e-

 The equivalence of (A) with (C) was noted by W. Wilczyński in 1982 [2], who
 substituted the ideal Ifor Nin (C) to obtain the definition of I-density. This
 idea can be extended even more, to the case of an arbitrary ideal J[l] .

 Definition 1 The number a is a J-density point of A C ® if for every sequence

 mn £ N, there is a subsequence mnp such that Xnnp(i4-a)n(-i,i) - > X(-i,i) J-
 a.e.

 Moving in parallel to the usual development of the density topology, we can
 define $j(A) to be the set of all Jdensity points of A and define the ordinary
 density topology to be

 Tm = {^4 C M : A C $^(-<4) and A is measurable}.

 Similarly, the I-density topology is

 7j = {A C M : A C $i(A) and A has the Baire property}.

 Looking at the definitions of these two topologies, one is led to the following
 question.
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 Problem 1 If J is an arbitrary ideal in M, find a property P such that

 Tj = {A C M : A C and A has property P }

 is well-behaved in the sense that the Lebesgue density and I-density topologies
 are well-behaved.

 To give a sense of what can go wrong, note that it is known there is a
 nonmeasurable and non-Baire set A C M such that Xn(>i-a)n(-i,i) - > X(-i,i)
 for ail a £ A [1]. Thus, if no additional condition P is imposed in Problem 1,
 this set is clopen in the topology resulting from any ideal J - even if Jis the
 empty ideal! In particular, 7V î Tļj and Tx î 7j. .

 It is possible to strengthen Definition 1 in hopes of improving the situation.
 Instead of taking sequences of integers in Definition 1 , we can substitute for
 mn an arbitrary sequence of positive real numbers tn | oo to obtain a density
 operator Síj(A, {/n : n < u;}) associated with each such sequence tn and ideal
 J. Then a strong J-density operator can be defined as

 9j(A)= fi :n<u>}.
 {«.}

 Even in this case, there are undesirable consequences, if additional as-
 sumptions are not placed upon the open sets. For example, if C is the ideal
 of countable subsets of M, then there is a non-measurable, non-Baire set
 A C ^ c(A ). Assuming the continuum hypothesis or Martin's axiom, there
 is a non-measurable and non-Baire set A C ^ i(A ) H

 Some additional examples and questions about these topologies are ex-
 plored in [1].
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