Marek Balcerzak, Lódź Technical University, Institute of Mathematics, al. Politechniki 11, I-2, 90-924 Lódź, Poland, email: mbalce@krysia.uni.lodz.pl

On some ideals of sets

The following question has been circulated among the mathematicians working in real analysis in Lódź: Which ideal generating the σ -ideal \mathbb{L} of Lebesgue null sets on the real line \mathbb{R} is a good analogue of the ideal NWD of nowhere dense sets generating the σ -ideal \mathbb{K} of meager sets on \mathbb{R} ? We show a general method yielding nice generators of \mathbb{L} . The results are derived from the forthcoming paper [2] joint with T. Świątkowski.

Assume that \mathcal{I} is a given σ -ideal of subsets of \mathbb{R} with the following properties:

(1) \mathcal{I} contains all singletons;

(2) $U \notin \mathcal{I}$ for each nonempty open $U \subseteq \mathbb{R}$;

(3) \mathcal{I} is invariant with respect to all functions of the form $x \mapsto ax + b$ where $a, b \in \mathbb{R}$;

(4) \mathcal{I} is Borel supported (i.e. for each $A \in \mathcal{I}$ there is a Borel set $B \in \mathcal{I}$ such that $A \subseteq B$).

We say that an ideal $\mathcal{J} \subseteq \mathcal{I}$ generates \mathcal{I} if each $A \in \mathcal{I}$ can be expressed as $\bigcup_{n \in \omega} A_n$ for some sequence $\{A_n\}_{n \in \omega} \subseteq \mathcal{J}$. We say that \mathcal{J} is a nice generator of \mathcal{I} if additionally the following conditions hold:

(1*) \mathcal{J} contains all singletons;

(2*) $\mathcal{J}|\mathcal{U} \neq \mathcal{I}|\mathcal{U}$ for each nonempty open $U \subseteq \mathbb{R}$ (where $\mathcal{J}|\mathcal{U} = \{\mathcal{E} \subseteq \mathcal{U} : \mathcal{E} \in \mathcal{J}\}$, and similarly for $\mathcal{I}|\mathcal{U}$);

(3*) \mathcal{J} is invariant with respect to all mappings $x \mapsto ax + b$, $a, b \in \mathbb{R}$;

(4*) \mathcal{J} is Borel supported;

(5*) \mathcal{J} is not a σ -ideal;

(6*) for each $E \subseteq \mathbb{R}$, the condition $E \cap U \in \mathcal{J}$ for any open bounded $U \subseteq \mathbb{R}$ implies $E \in \mathcal{J}$.

We can assume a more general situation where \mathbb{R} is replaced by an uncountable Polish space X. Conditions $(1),(2),(4),(1^*),(2^*),(4^*),(5^*)$ remain the same. The mappings $x \mapsto ax + b$ in (3) and (3^{*}) can be replaced by another natural class of functions (for instance, by the respective algebraic operations, if X forms a metric group or a ring). Condition (6^{*}) is the same but it becomes trivial if X is bounded. In particular, we will consider $X = 2^{\omega}$

(the Cantor space) which forms a metric group with the coordinatewise addition modulo 2.

The ideal (σ -ideal) of all nowhere dense (meager) sets in X will be denoted again by NWD (K). We say that a σ -ideal \mathcal{I} is orthogonal to K if there are sets $A \in \mathcal{I}$ and $B \in \mathbb{K}$ satisfying $A \cup B = X$.

Theorem 1 [2] Assume that \mathcal{I} and \mathcal{I}_{∞} are σ -ideals of subsets of X such that $\mathcal{I}_{\infty} \subseteq \mathcal{I}$ and \mathcal{I}_{∞} is orthogonal to \mathbb{K} . Then we have: (a) $\mathcal{I} = \{\mathcal{A} \cup \mathcal{B} : \mathcal{A} \in \mathcal{I}_{\infty}, \mathcal{B} \in \mathbb{K} \cap \mathcal{I}\};$ (b) $\mathcal{J} = \{\mathcal{A} \cup \mathcal{B} : \mathcal{A} \in \mathcal{I}_{\infty}, \mathcal{B} \in NWD \cap \mathcal{I}\}$ forms an ideal generating \mathcal{I} ; (c) if each nonempty open set $U \subseteq X$ contains a set $D \in NWD \cap \mathcal{I} \setminus \mathcal{I}_{\infty}$ then $\mathcal{J} | \mathcal{U} \neq \mathcal{I} | \mathcal{U}$ for each nonempty open set $U \subseteq X$.

Remark. Assertion (c) states that \mathcal{J} fulfils (2*). Conditions (1*),(3*) and (4*) for \mathcal{J} hold provided that \mathcal{I} and \mathcal{I}_{∞} fulfil (1),(3) and (4). The construction given in the proof of (c) guarantees that (5*) holds. Condition (6*) is always true for any σ -ideal and it holds for NWD. Thus, by (b), the ideal \mathcal{J} satisfies (6*). Consequently, Theorem 1 produces nice generators of \mathcal{I} .

Examples. (i) Considear any regular Borel measure μ on \mathbb{R} . Then the family \mathcal{I}_{∞} of null sets with respect to μ forms a σ -ideal othogonal to \mathbb{K} . We want \mathcal{I}_{∞} strictly smaller than \mathbb{L} in the sense given in (c). For instance, *p*-dimensional Hausdorff measure on \mathbb{R} with $0 is good since in each interval there exists a Cantor-type nowhere dense perfect set belonging to <math>\mathbb{L}$ but of positive *p*-dimensional Hausdorff measure.

(ii) Consider Mycielski σ -ideals on 2^{ω} defined in [3]. Note that a Mycielski σ -ideal is orthogonal to K and invariant in the Cantor group [3]. Additionally, for each Mycielski σ -ideal \mathcal{M} there exists a Mycielski σ -ideal $\mathcal{M}_{\infty} \subseteq \mathcal{M}$ such that each open nonempty set $U \subseteq 2^{\omega}$ contains a set $D \in \text{NWD} \cap \mathcal{M} \setminus \mathcal{M}_{\infty}$ [2]. Thus, by Theorem 1, for each Mycielski σ -ideal \mathcal{M} there is a Mycielski σ -ideal $\mathcal{M}_{\infty} \subseteq \mathcal{M}$ such that $\{A \cup B : A \in \mathcal{M}_{\infty}, \mathcal{B} \in \mathbb{K} \cap \mathcal{M}\}$ is an ideal generating \mathcal{M} and fulfilling conditions $(1^*)-(5^*)$.

Example (i) shows that there are many nice generators of \mathbb{L} . Observe also that conditions $(1^*)-(6^*)$ do not characterize NWD among the ideals generating \mathbb{K} since the family $\{A \cup B : A \in \text{NWD}, B \in \mathbb{K} \cap \mathbb{L}\}$ forms an ideal (greater than NWD) generating \mathbb{K} and fulfilling $(1^*)-(6^*)$. So, conditions $(1^*)-(6^*)$ describe the whole class of ideals generating a given σ -ideal with properties (1)-(4). It would be interesting to choose in a reasonable way a unique canonical generator.

Problem. Is it possible to give a characterization of NWD such that its measure analogue yields a unique ideal generating \mathbb{L} ?

Finally, let us mention another question concerning measure and category posed in [1].

Consider the σ -ideal

$$\mathcal{I} = \{ \mathcal{E} \subseteq \mathbb{R}^{\epsilon} : \mathcal{E} \subseteq \mathcal{A}^{\epsilon} \cup \mathcal{B}^{\epsilon} \text{ for some } \mathcal{A} \in \mathbb{K}, \mathcal{B} \in \mathbb{L} \}$$

and let \mathcal{B} denote the family of all Borel sets in \mathbb{R}^2 . Is it true that any family $\mathcal{F} \subseteq \mathcal{B} \setminus \mathcal{I}$ must be countable?

Just after the Łódź conference M. Laczkovich solved that problem in negative.

References

- [1] M. Balcerzak, Remarks on products of σ -ideals, Colloq. Math. 56(1988), 201-209.
- [2] M. Balcerzak, T. Świątkowski, On ideals generating a given σ -ideal, Scientific Bulletin of Lódź Technical University, to appear.
- [3] J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20(1969), 71-76.