Dorota Rogowska, Łódź Technical University, Institute of Mathematics, al. Politechniki 11, I-2, 90-924 Łódź, Poland

SOLUTION OF THE BAIRE ORDER PROBLEM OF MAULDIN

Let X be an uncountable separable and complete metric space (briefly called *Polish*) and let I be a σ -ideal of subsets of X such that $X \notin I$. Denote by C_I the family of all functions $f: X \to \mathbb{R}$ whose sets of points of discontinuity are in I. Then put $B_0(I) = C_I$ and for each ordinal $\alpha > 0$ define $B_\alpha(I)$ as the family of all pointwise limits of sequences of functions from $\bigcup_{\gamma < \alpha} B_\gamma(I)$.

It is easy to check that the *Baire system* $B_{\alpha}(I), \alpha \leq \omega_1$, has the following properties:

- $B_{\omega_1}(I)$ is closed under pointwise limits, i.e. $B_{\omega_1+1}(I) = B_{\omega_1}(I)$,
- for $I = \{\emptyset\}$ we have the classical Baire system (denoted by $B_{\alpha}, \alpha \leq \omega_1$).

Now we define $r(I) = min\{\alpha \leq \omega_1 : B_{\alpha+1}(I) = B_{\alpha}(I)\}$ which is called the *Baire order* of C_I .

In [M2] Mauldin posed the following problem:

If $0 < \alpha < \omega_1$, is there a σ -ideal I_{α} of the first category subsets of [0, 1], which contains all sets of Lebesgue measure 0 such that the family of all functions which are continuous except for a set in this σ -ideal I_{α} has Baire order α ?

Note that in the above question, σ -ideals are required to contain all singletons $\{x\}$; a σ -ideal which has that property is called *uniform*. In the Main Theorem we will show that, for each uniform σ -ideal I of subsets of X, we have either r(I) = 1 or $r(I) = \omega_1$. It solves Mauldin's problem in negative.

Denote by \mathcal{B} the family of all Borel subsets of X, and by Σ_{α}^{0} , Π_{α}^{0} (for $0 < \alpha < \omega_{1}$) - the subclasses of \mathcal{B} . A σ -ideal I is called Σ_{2}^{0} supported if each $A \in I$ is contained in some $B \in I \cap \Sigma_{2}^{0}$. For a σ -ideal I, we define

$$I^* = \{A \subset X : (\exists B \in I \cap \Sigma_2^0) (A \subset B)\}.$$

Obviously, I^* is a Σ_2^0 supported σ -ideal and if I is a Σ_2^0 supported σ -ideal then $I = I^*$. Since the set of discontinuity points of an arbitrary function is of type F_{σ} , we have $C_I = C_{I^*}$ for each σ -ideal I, and thus the Baire order problem may be restricted to Σ_2^0 supported σ -ideals.

We will assume that I is a uniform σ -ideal of subsets of X. If \mathcal{F} is a family of subsets of X then define $MGR(\mathcal{F})$ as the family of all subsets B of X such that for each $A \in \mathcal{F}$ the set $B \cap A$ is of the first category in A.

The following deep result plays a key role in the proof of our Main Theorem.

Proposition 1 [KS, thm 2] Let I be a Σ_2^0 supported σ -ideal. Then precisely one of the following possibilities holds:

(i) $I = MGR(\mathcal{F})$ for a countable family \mathcal{F} of closed subsets of X (moreover, it may be assumed that $\mathcal{F} = \{F_{\gamma} : \gamma < \alpha\}$ where $\alpha < \omega_1$ and $F_{\gamma} \subset F_{\beta}$ for $\beta < \gamma < \alpha$, and $F_{\gamma+1}$ is nowhere dense in F_{γ} for $\gamma < \alpha$);

(ii) there exists a homeomorphic embedding $\varphi : 2^{\omega} \times \omega^{\omega} \to X$ such that $\varphi[\{t\} \times \omega^{\omega}] \notin I$ for each $t \in 2^{\omega}$. \Box

Proposition 2 If a σ -ideal I satisfies condition (ii) of Proposition 1 then I has the following property:

(M) there exists a Borel function $f : X \to X$ such that $f^{-1}[\{x\}] \notin I$ for each $x \in X$.

Define $R(I) = \min\{\alpha \leq \omega_1 : (\forall B \in \mathcal{B}) (\exists A \in \Sigma^0_{\alpha}) (B \triangle A \in I)\}$ where $\Sigma^0_{\omega_1} = \mathcal{B}$ and $B \triangle A = (B \setminus A) \cup (A \setminus B)$. Observe that Σ^0_{α} can be replaced by Π^0_{α} in the above definition.

Proposition 3 [B3, Corollary 2.2] If a σ -ideal I has the property (M) then $R(I) = \omega_1$. \Box

Proposition 4 [M2, Thm 3] For every σ -ideal I and each α , $0 < \alpha \leq \omega_1$, we have $f \in B_{\alpha}(I)$ if and only if there is $g \in B_{\alpha}$ such that $\{x \in X : f(x) \neq g(x)\} \in I^*$. \Box

Proposition 5 [B2] If I is a Σ_2^0 supported σ -ideal and $R(I) = \omega_1$ then $r(I) = \omega_1$.

Using the above propositions we prove:

Theorem [BR] If X is an uncountable Polish space and I is an uniform σ -ideal then either r(I) = 1 or $r(I) = \omega_1$.

Remark. At this moment we do not know which values between 1 and ω_1 can be achieved by r(I) when I is not uniform. Lately, some results in that direction have been obtained by I. Reclaw.

References

- [B2] M. Balcerzak, Classification of σ -ideals, Math. Slovaca 37 (1987), pp. 63-70.
- [B3] M. Balcerzak, Can ideals without ccc be interesting ?, Topology Appl., 55 (1994), pp. 251-260.
- [BR] M. Balcerzak, D. Rogowska, Solution of the Baire order problem of Mauldin, Proc. Amer. Math. Soc. (to appear)
- [KS] A. S. Kechris, S. Solecki, Approximation of analytic by Borel sets and definable countable chain conditions, Israel J. Math. (to appear).
- [M2] R. D. Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 41 (1973), pp. 535-540.