Real Analysis Exchange Vol. 20(2), 1994/5, pp. 424-426

Karol Baron, Uniwersytet Śląski, Instytut Matematyki, Bankowa 14, PL-40-007 Katowice, email: baron@usctoux1.cto.us.edu.pl

ON THE CAUCHY DIFFERENCE

If $f : \mathbb{R} \to \mathbb{R}$ is a function such that its Cauchy difference

(1)
$$f(x+y) - f(x) - f(y)$$

takes rational values only, then f is a sum of an additive function and a function with rational values only. However, there are functions $f : \mathbb{R} \to \mathbb{R}$ such that (1) takes *integer* values only and for each additive $a : \mathbb{R} \to \mathbb{R}$ there exists an $x \in \mathbb{R}$ such that $f(x) - a(x) \notin \mathbb{Z}$ (see, e.g., [1; Part 2]). But, if (1) as a function of two real variables is Lebesgue measurable and takes integer values only, then f is a sum of an additive function and a (Lebesgue measurable) function with integer values only [2]. It seems that J. G. van der Corput [6] was the first who noticed that under some regularity condition imposed on a function $f : \mathbb{R} \to \mathbb{R}$ such that (1) takes integer values only, there exists a real constant c such that $f(x) - cx \in \mathbb{Z}$ for every $x \in \mathbb{R}$. In [5] the theorem of van der Corput was extended for functions defined on real topological vector spaces as follows.

Theorem 1 Suppose E is a real topological vector space. If the Cauchy difference (1) of a function $f: E \to \mathbb{R}$ takes integer values only and there exist non-void and open sets $U \subset E$ and $W \subset \mathbb{R}$ such that

$$f(U) \cap (W + \mathbb{Z}) = \emptyset,$$

then there exists a $g \in E^*$ such that

(2)
$$f(x) - g(x) \in \mathbb{Z}$$
 for every $x \in E$.

It has been shown in [4] that the theorem of van der Corput cannot be extended for functions taking values in \mathbb{R}^2 (with a replacement of \mathbb{Z} by a discrete subgroup of \mathbb{R}^2).

Theorem 1 implies the following corollary.

CAUCHY DIFFERENCE

Corollary 1 Suppose E is a real topological vector space. If the Cauchy difference (1) of a function $f: E \to \mathbb{R}$ takes integer values only and there exists a non-void and open set $U \subset E$ and a $\gamma \in (0, \frac{1}{2})$ such that

(3)
$$f(U) \subset (-\gamma, \gamma) + \mathbb{Z},$$

then (2) holds with a $g \in E^*$.

Consider now the case where

(4)
$$f(x+y) - f(x) - f(y) \in \mathbb{Z}$$
 for all orthogonal $x, y \in E$.

The following has been proved in [3].

Theorem 2 Suppose E is a real inner product space of dimension at least 2. If a function $f: E \to \mathbb{R}$ satisfies (4) and there exists a neighbourhood $U \subset E$ of the origin such that (3) holds for some $\gamma \in (0, \frac{1}{4})$, then there exists a real constant c and a $g \in E^*$ such that

$$f(x) - c||x||^2 - g(x) \in \mathbb{Z}$$
 for every $x \in E$.

It is an open problem whether in Theorem 2 the number γ can be taken from the interval $(0, \frac{1}{2})$.

An application of Theorem 2 to orthogonally exponential functions, i.e. to functions satisfying

(5)
$$\Phi(x+y) = \Phi(x)\Phi(y)$$
 for all orthogonal $x, y \in E$,

gives (see [3]) what follows.

Corollary 2 Suppose E is a real inner product space of dimension at least 2. If a function $\Phi: E \to \mathbb{C}$ satisfies (5) and there exists a neighbourhood $U \subset E$ of the origin and a positive real constant β such that

$$|\Phi(x)| \leq \beta \mathcal{R}(\Phi(x))$$
 for every $x \in U$,

then either Φ vanishes on $E \setminus \{0\}$, or there exist additive functions $a : \mathbb{R} \to \mathbb{R}$ and $A : E \to \mathbb{R}$, a real constant c and a $g \in E^*$ such that

$$\Phi(x) = \exp(a(||x||^2) + A(x) + i(c||x||^2 + g(x))) \text{ for every } x \in E.$$

References

- J.A. Baker, On some mathematical characters, Glasnik Mathematički 25 (45) (1990), 319-328.
- [2] K. Baron, A remark on the stability of the Cauchy equation, Rocznik Naukowo-Dydaktyczny WSP w Krakowie. Prace Matematyczne 11 (1985), 7-12.
- K. Baron and G.L. Forti, Orthogonality and additivity modulo Z, Results in Mathematics (to appear).
- [4] K. Baron, A. Simon and P. Volkmann, On the Cauchy equation modulo a subgroup. Manuscript.
- [5] K. Baron and P. Volkmann, On a Theorem of van der Corput, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 189-195.
- [6] J.G. van der Corput, Goniometrische functies gekarakteriseerd door een functionaalbetrekking, Euclides 17 (1940), 55-75.