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 ON THE SUMS AND THE PRODUCTS

 OF QUASI-CONTINUOUS FUNCTIONS

 Throughout this paper we will consider only functions from M into M .
 We say that a function / is quasi- continuous (resp. cliquish) at a point

 X € M if for each e > 0 and each open set U 3 x we can find a non-empty
 open set V C U such that u ;(/, {x} U V) < e (resp. a;(/, V) < e), where the
 symbol u denotes the oscillation, i.e., u(f, A) = sup{|/(x) - /(y)| : x,y 6 A}.

 We say that / is quasi- continuous (resp. cliquish) if it is quasi-continuous
 (resp. cliquish) at each point x 6 M. Cliquish functions are also known as
 pointwise discontinuous.

 The following properties are well-known and easy to prove.

 • A function / is quasi-continuous iff for each x G M there exists a sequence
 xi, x2, ... € C(f) such that xn - y x and f(xn) - ¥ f(x).

 • A function / is cliquish iff C(f) is residual. In particular, every Baire
 one function is cliquish.

 1 Sums

 It is easy to show that the sum of two quasi-continuous functions need not
 be quasi-continuous. However, it must be cliquish. Z. Grande proved in [3]
 that each cliquish function can be written as the sum of four quasi-continuous
 functions. It is a result of J. Borsik that three functions are enough [1], and the
 beneath theorem, which generalizes also results of [7] and [4], gives a complete
 answer - just use this theorem for gi = f and g2 =0.

 Theorem 1 Let gi, . . . ,gic be cliquish and rj > 0. There is a Lebesgue func-
 tion a such that gi + a is Darboux and quasi-continuous for i £ {1, . . ., k},
 C(a) D r£_i C(gi) and |a| < sup{w(ýi,x) : i' e {1, . . . , fc}, x € R}+ 77 on M.
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 (The symbol u;(#, x) stands for limr-^o+ ^(/, {y G M : g (x, y) < r}).)
 This theorem implies, in particular, that in case / is Borei measurable, then

 we can require the summands to be so, too. We can however ask whether the
 summands can be chosen even more regular, if / is so. E.g., we can consider
 semicontinuity or boundedness below.

 The first question has an affirmative answer. It was proved by Z. Grande [5]
 in the bounded case, and by me in the general case, since / = (/ + a) -|- (-a).

 Theorem 2 Given an upper semicontinuous function f and an tj > 0 we can
 find a non-negative , lower semicontinuous, quasi- continuous, Lebesgue func-
 tion a such that f + a is Darboux upper semicontinuous and quasi-continuous,
 C{a) D C(f) and 'a' < sup {u;(/, x) : x G M} + tj on M.

 The other question has negative answer. An easy computation shows that
 the function f(x) = 'x' + X{o}(^) cannot be written as the sum of non-negative
 quasi-continuous functions. Analyzing this example one can prove that condi-
 tion (B) below is indeed necessary. However sufficiency is not so evident.

 Theorem 3 For each k > 1 and each function f G 21 the following three
 conditions are equivalent:

 (A) there exist non-negative quasi- continuous functions hi, . . . , hk such that
 f = hi -f . . . + hfc,

 (B) f is non-negative, cliquish and lim sup f(y) > f{x)/k for x £C(f),

 ( C) there exist non-negative quasi- continuous functions h' , . . . , hk G 21 such
 that f = Ai -I- . . . + hk and for i € {1, , k}: C(A,) D C(f) and h{(x) > 0
 whenever f(x) >0, x G M.

 In this theorem 21 stands for a family of functions which fulfills some extra
 conditions. In particular, it can be any of the following families: all functions,
 measurable functions, or Baire class a. I do not know, however, whether it
 can be the family of all approximately continuous functions or all derivatives.

 This theorem implies the following corollary.

 Corollary 4 For each k > 1 and each function f G 21 the following three
 conditions are equivalent:

 (a) there exist bounded below quasi- continuous functions hi, . . . , hk such that
 f = hi -b . • • + hk,

 (b) / is a bounded below cliquish function and

 inf { lim sup f(y) - f(x)/k : x £ C(f)' J > -oo, S->*,y€C(/) J
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 (c) there exist bounded below quasi-continuous functions hi, . . . , hk G 21 such
 that f = h' + . . . -I- hk and C(h{) D C(f) for i G {1, . . . , k}.

 As an application observe that the positive function / = JZn€NnX{n} does
 not satisfy condition (b) of this corollary.

 2 Products

 T. Natkaniec proved in [6] the following theorem.

 Theorem 5 A function f can be factored into a ( finite ) product of quasi-
 continuous functions iff f is cliquish and ^
 (★) each of the sets /-1 ((- oo, 0)), /_1(0) and f~l(( 0,oo)) is the union of

 an open set and a nowhere dense set.

 In the proof he uses eight (!) quasi-continuous functions. Again J. Borsik [2]
 showed that three functions are enough and my result gives a complete answer.

 Theorem 6 For each function f G 21 the following conditions are equivalent :

 a) There is a k G N and quasi- continuous functions hi , . . . , hk such that
 f = hi • . . . • hk.

 b) There are quasi- continuous functions Ai, /12 G 21 with f = hi • /12.

 c) Function f is cliquish and it satisfies condition (★) of Theorem 5.

 (The family 21 can be any of those mentioned after Theorem 3.)
 One can notice that in the above theorem we require neither preserving

 the points of continuity by the factors, nor their boundedness in case / is
 bounded. It turns out we cannot claim these requirements.

 Theorem 7 For each k > 1 and each function f G 21 the following three
 conditions are equivalent :

 (A) there exist arbitrary bounded quasi- continuous functions hi, . . . , hk such
 that f - hi ' ' hk,

 (B) / is a bounded cliquish function, it satisfies condition (*); and moreover,

 (•) there exists an L > 0 such that for each x £ C(f)

 Uminf 'f(y)' < L ■ V'f(x)',
 !/-►*, y€C(/)

 (C) There exist bounded quasi- continuous functions hi, . . . , hk G 21 such that
 f - hi - • hk -

 (Necessity of condition (•) follows by Corollary 4.)
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