Arnold W. Miller, University of Wisconsin-Madison, Department of Mathematics, 480 Lincoln Drive, Madison WI 53706-1388, miller@@math.wisc.edu

COMPACT SUBSETS OF THE BAIRE SPACE

Let ω^{ω} be the Baire space, infinite sequences of natural numbers with the product topology. In this topology a set $K \subset \omega^{\omega}$ is compact iff there exists a finite branching tree $T \subseteq \omega^{<\omega}$ such that

$$K = [T] = \{ x \in \omega^{\omega} : \forall n \in \omega \ x \upharpoonright n \in T \}.$$

Theorem 1 If there exists a countable standard model of ZFC, then there exists M, a countable standard model of ZFC, $N \supseteq M$, a generic extension of M, and $T \in N$ a finite branching subtree of $\omega^{<\omega}$ with the properties that

- 1. $\forall f \in [T] \cap N \exists g \in M \cap \omega^{\omega} f(n) < g(n) \text{ for all but finitely many } n \in \omega$ and
- 2. $\forall g \in M \cap \omega^{\omega} \exists f \in [T] \cap N \ g(n) < f(n) \ for infinitely \ many \ n \in \omega$.

Since the elements of [T] dominate the ground model and [T] is finite branching, it must be that there exists $f \in N \cap \omega^{\omega}$ such that for every $g \in M \cap \omega^{\omega}$, g(n) < f(n) for all but finitely many n. On the other hand every element of [T] is weakly dominated by a ground model sequence. I don't know if in item 2 we can have the stronger condition that g(n) < f(n) for all but finitely many $n \in \omega$.

This is related to Michael's problem [3] of whether there must be a Lindelöf space X such that $X \times \omega^{\omega}$ is not Lindelöf and M.E.Rudin's characterization of that problem [4], see also Alster [1] and Lawrence [2].

References

 K.Alster, On the product of a Lindelöf space with the space of irrationals under Martin's Axiom, Proceedings of the American Mathematical Society, 110(1990), 543-547. COMPACT SUBSETS OF THE BAIRE SPACE

- [2] B.Lawrence, The influence of a small cardinal on the product of a Lindelöf space and the irrational, Proc. Amer. Math. Soc., 110(1990), 535-542.
- [3] E.Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc., 69(1963), 375-376.
- [4] M.E.Rudin, An analysis of Michael's problem; preprint 1993.