Anna Kucia, Andrzej Nowak, Instytut Matematyki, Uniwersytet Śląski, 40-007 Katowice, Poland

OLD AND NEW SANDWICH THEOREMS

Let X be a set, (Y, \leq) an ordered space, \mathcal{F} and \mathcal{G} two families of functions from X to Y such that $\mathcal{H} = \mathcal{F} \cap \mathcal{G} \neq \emptyset$. We assume that the classes \mathcal{F} and \mathcal{G} are mutually symmetric in some sense, e.g. if $Y = \mathbb{R}$ then we require $\mathcal{G} = -\mathcal{F} = \{-f : f \in \mathcal{F}\}$.

By sandwich theorems we mean results of the type: For each $f \in \mathcal{F}$ and $g \in \mathcal{G}$ satisfying $f(x) \leq g(x)$, $x \in X$, there exists $h \in \mathcal{H}$ such that $f(x) \leq h(x) \leq g(x)$, $x \in X$. Note that such results are also called separation theorems.

It is known that under some additional assumptions, the sandwich theorem holds for the following pairs $(\mathcal{F}, \mathcal{G})$:

- 1. Superadditive and subadditive functions on Abelian semigroups.
- 2. Subadditive and superadditive set functions on rings.
- 3. Subharmonic and superharmonic functions.
- Submartingales and supermartingales.
- 5. Upper and lower semicontinuous functions.
- 6. Concave and convex functions.

We shall deal with last two cases. In the semicontinuous case the following theorem is well known:

Theorem 1 If X is a normal topological space, and $f, g: X \to \mathbb{R}$ are such that f is upper semicontinuous, g is lower semicontinuous and $f \leq g$, then there exists continuous $h: X \to \mathbb{R}$ satisfying $f \leq h \leq g$.

E.Michael noticed that this result is a consequence of his selection theorem. In fact, required h is a continuous selector of the multifunction $\phi(x) = [f(x), g(x)], x \in X$. Recently J.M.Borwein and M.Théra [2] have generalized Theorem 1 for the case when Y is a Banach space ordered by a convex cone. Their proof is based on the continuous selection theorem.

The above theorem has its analogue for multifunctions. Let ϕ be a multifunction from a topological space X to a metric space Z, i.e. the values of ϕ are nonempty subsets of Z. We say that ϕ is Hausdorff-upper semicontinuous, abbreviated to H-u.s.c., (respectively, Hausdorff-lower semicontinuous, abbrev. to H-l.s.c.) if for each $x_o \in X$ and $\epsilon > 0$ there is a neighborhood

U of x_o such that $\phi(x) \subset B(\phi(x_o), \epsilon)$ (respectively, $\phi(x_o) \subset B(\phi(x), \epsilon)$) for $x \in U$. For $A \subset Z$, $B(A, \epsilon)$ denotes open ϵ —ball around A. A multifunction ϕ is *Hausdorff-continuous* if it is H-l.s.c. and H-u.s.c.. By $\mathcal{F}(Z)$ we denote the family of all closed, convex, bounded and nonempty subsets of a normed vector space Z.

The following theorem holds:

Theorem 2 ([4]) Suppose X is paracompact, Z is a Banach space, and ϕ, ψ : $X \to \mathcal{F}(Z)$ are such that ϕ is H-u.s.c., ψ is H-l.s.c. and $\phi \subset \psi$. Then there exists Hausdorff-continuous $\chi: X \to \mathcal{F}(Z)$ satisfying $\phi \subset \chi \subset \psi$.

The proof is based on the Rådström-Hörmander embedding theorem and on the Michael selection theorem. The assumption that ψ has bounded values is superfluous. If we additionally assume that ϕ is compact-valued, then we can obtain χ compact-valued too. Theorem 2 generalizes a result of S.M.Aseev [1]. Related sandwich theorem for multifunctions was given by F.S.De Blasi [3].

In the concave-convex case the following sandwich theorem is well known:

Theorem 3 Let X be a convex subset of a real vector space V, and $f, g: X \to \mathbb{R}$. If X has nonempty relative algebraic interior, f is concave, g is convex and $f \leq g$, then there exists affine $h: V \to \mathbb{R}$ such that $f \leq h \leq g$.

Under assumption that V is a topological vector space, one can look for continuous h. All such results are closely related to the Hahn-Banach extension theorem. In the seventies Theorem 3 was generalized for functions with values in an ordered vector space. We conjecture that it has an analogue for multifunctions.

Let X be a convex subset of a vector space, and Z another vector space. A multifunction ϕ from X to Z is convex if for all $x, y \in X$, $\lambda \in [0, 1]$,

$$\phi(\lambda x + (1-\lambda)y) \supset \lambda \phi(x) + (1-\lambda)\phi(y).$$

Note that ϕ is convex iff its graph $gr\phi = \{(x,y) \in X \times Z : y \in \phi(x)\}$ is convex. In particular, any convex multifunction has convex values. We say that ϕ is concave if for all $x, y \in X$, $\lambda \in [0,1]$,

$$\phi(\lambda x + (1-\lambda)y) \subset \lambda \phi(x) + (1-\lambda)\phi(y).$$

Finally, a multifunction ϕ is called *affine* if it is convex and concave.

We conjecture that the following theorem holds: Suppose X is a convex subset of a real vector space, Z is a normed vector space, and $\phi, \psi : X \to \mathcal{F}(Z)$. If X has nonempty relative algebraic interior, ϕ is convex, ψ is concave and $\phi \subset \psi$, then there exists affine $\chi : X \to \mathcal{F}(Z)$ such that $\phi \subset \chi \subset \psi$. In the case $Z = \mathbb{R}$ the existence of such a multifunction χ is a consequence of Theorem 3.

386 Kucia and Nowak

References

- [1] S.M.Aseev, Approximation of semi-continuous multivalued mappings by continuous ones (in Russian), Izv. Acad. Nauk SSSR, Ser.Mat. 46(1982), 460-476. English translation: Math.USSR Izv. 20(1983), 435-448.
- [2] J.M.Borwein and M.Théra, Sandwich theorems for semicontinuous operators, Canad. Math. Bull. 35(1992), 463-474.
- [3] F.S.De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106(1985), 1-18.
- [4] A.Kucia, Some applications of the Rådström-Hörmander embedding theorem, in preparation.