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 OLD AND NEW SANDWICH THEOREMS

 Let X be a set, (Y, <) an ordered space, T and Q two families of functions
 from X to Y such that 71 = T H Q ^ 0. We assume that the classes T
 and Q are mutually symmetric in some sense, e.g. if Y = M then we require
 G = -r = {-/:/ e T).

 By sandwich theorems we mean results of the type: For each / G T and
 g G G satisfying f(x ) < g{x), x G X, there exists h G fi such that f(x) <
 h(x) < g(x ), xGX. Note that such results are also called separation theorems.

 It is known that under some additional assumptions, the sandwich theorem
 holds for the following pairs {T , Q) :
 1. Superadditive and subadditive functions on Abelian semigroups.
 2. Subadditive and superadditive set functions on rings.
 3. Subharmonic and superharmonic functions.
 4. Submartingales and supermartingales.
 5. Upper and lower semicontinuous functions.
 6. Concave and convex functions.

 We shall deal with last two cases. In the semicontinuous case the following
 theorem is well known:

 Theorem 1 If X is a normal topological space , and f,g : X - > M are such
 that f is upper semicontinuous , g is lower semicontinuous and f < g, then
 there exists continuous h : X - y M satisfying f < h < g.

 E.Michael noticed that this result is a consequence of his selection theo-
 rem. In fact, required h is a continuous selector of the multifunction <j>{x) =
 [f{x)i9Ìx) L x G X. Recently J.M.Borwein and M.Thera [2] have generalized
 Theorem 1 for the case when Y is a Banach space ordered by a convex cone.
 Their proof is based on the continuous selection theorem.

 The above theorem has its analogue for multifunctions. Let <ļ> be a mul-
 tifunction from a topological space X to a metric space Z , i.e. the values of
 <j> are nonempty subsets of Z . We say that <j> is Hausdorff- upper semicontin-
 uous, abbreviated to H-u.s.c., (respectively, Hausdorff-lower semicontinuous ,
 abbrev. to H-l.s.c.) if for each x0 G X and e > 0 there is a neighborhood
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 U of x0 such that <¡>{x) C B(<t>(x0)ie) (respectively, <1>(x0) C B(<ļ>(x)ie)) for
 X G U . For A C Z) B(A , e) denotes open e- ball around A. A multifunction
 <t> is Hausdorff-continuous if it is H-l.s.c. and H-u.s.c.. By F(Z) we denote
 the family of all closed, convex, bounded and nonempty subsets of a normed
 vector space Z .

 The following theorem holds:

 Theorem 2 ([4]) Suppose X is paracompact , Z is a Banach space, and <1>,ip :
 X -¥ T(Z) are such that <f) is H-u.s.c., rp is H-l.s.c. and <f> C ip. Then there
 exists Hausdorff-continuous x '• X - ► T(Z) satisfying <ļ> C X C ip-

 The proof is based on the Rädström-Hörmander embedding theorem and
 on the Michael selection theorem. The assumption that ip has bounded values
 is superfluous. If we additionally assume that <ļ> is compact- valued, then we
 can obtain x compact-valued too. Theorem 2 generalizes a result of S.M.Aseev
 [1]. Related sandwich theorem for multifunctions was given by F.S.De Blasi
 [S].

 In the concave-convex case the following sandwich theorem is well known:

 Theorem 3 Let X be a convex subset of a real vector space V , and f, g : X
 M. If X has nonempty relative algebraic interior , / is concave, g is convex
 and f < g, then there exists affine h : V - ¥ M such that f < h < g.

 Under assumption that V is a topological vector space, one can look for
 continuous h. All such results are closely related to the Hahn-Banach exten-
 sion theorem. In the seventies Theorem 3 was generalized for functions with
 values in an ordered vector space. We conjecture that it has an analogue for
 multifunctions.

 Let X be a convex subset of a vector space, and Z another vector space.
 A multifunction <j> from A' to Z is convex if for all x, y G X, À 6 [0,1],

 <t>('x -f (1 - A)t/) D '<ļ>{x) + (1 - A )<t>(y).
 Note that <ļ> is convex iff its graph gr<1> = {(x, y) G X x Z : y € <£(z)} is convex.
 In particular, any convex multifunction has convex values. We say that <j> is
 concave if for all x, y G X, A G [0, 1],

 <t>( Ax + (1 - A)y) C A <t>(x) + (1 - A)<¿(t/).
 Finally, a multifunction <j> is called affine if it is convex and concave.

 We conjecture that the following theorem holds: Suppose X is a convex
 subset of a real vector space , Z is a normed vector space, and <£, ý : X - ¥
 T{Z). If X has nonempty relative algebraic interior, <¡> is convex, is concave
 and <t> C tp, then there exists affine x '■ X - > f{Z) such that <j> CxCf In
 the case Z = M the existence of such a multifunction x is a consequence of
 Theorem 3.
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