Udayan B. Darji, Department of Mathematics, University of Louisville, Louisville, Kentucky 40292 (email: ubdarj01@ulkyvx.louisville.edu)
Paul D. Humke, Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057 (email: humke@stolaf.edu)

EVERY BOUNDED FUNCTION IS THE SUM OF THREE ALMOST CONTINUOUS BOUNDED FUNCTIONS*

In [1] it was asked whether every bounded function could be written as the sum of two almost continuous bounded functions and it was communicated that this question was open if "two" was replaced by "finite". In this note we show that "two" is indeed the right question; that is, we prove:

Theorem 1 Suppose $f:[0,1] \rightarrow(-1,1)$ is arbitrary. Then there exist three almost continuous functions $g_{i}:[0,1] \rightarrow(-1,1), i=1,2,3$ such that $f=$ $\sum_{i=1}^{3} g_{i}$.

Proof. Let B_{1} be a Bernstein set (a totally imperfect set whose complement is also totally imperfect), $B_{2}=[0,1] \backslash B_{1}$ and enumerate the two sets as

$$
B_{1}=\left\{p_{\alpha}: \alpha<\omega_{\mathbf{c}}\right\} \text { and } B_{2}=\left\{q_{\alpha}: \alpha<\omega_{\mathbf{c}}\right\}
$$

where $\omega_{\mathbf{c}}$ is the first ordinal of cardinality $2^{\aleph_{0}}$. Let $\mathcal{C}=\left\{C_{\alpha}: \alpha<\omega_{\mathbf{c}}\right\}$ be an enumeration of those closed subsets of $[0,1] \times(-1,1)$ whose projection on the x-axis (the Π_{1} projection) has cardinality \mathbf{c}.

We first construct g_{1} on B_{1} so that $g_{1} \mid B_{1}$ (the graph of g_{1} restricted to B_{1}) intersects C_{ζ} for all $\zeta<\omega_{\mathbf{c}}$. Let $\gamma(0)=\min \left\{\delta: p_{0} \in \Pi_{1}\left(C_{\delta}\right)\right\}$. Suppose $\gamma(\beta)$ has been defined for all $\beta<\alpha$. Then define $\gamma(\alpha)=\min \left\{\delta: p_{\alpha} \in\right.$ $\Pi_{1}\left(C_{\delta}\right)$ and $\delta \neq \gamma(\beta)$ for all $\left.\beta<\alpha\right\}$. Now for earh $\alpha<\omega_{c}$, let $g_{1}\left(p_{\alpha}\right)$ be such that $\left(p_{\alpha}, g_{1}\left(p_{\alpha}\right)\right) \in C_{\gamma(\alpha)}$. This completes the definition of g_{1} on B_{1}. We next observe that $g_{1} \mid B_{1}$ intersects every C_{ζ}. To obtain a contradiction, assume

[^0]that such is not the case and let ζ be the least ordinal such that $g_{1} \mid B_{1}$ does not intersect C_{ζ}. Since the cardinality of $\Pi_{1}\left(C_{\zeta}\right) \cap B_{1}=\mathbf{c}$ and γ is 1-1, we may choose α such that $\gamma(\alpha)>\zeta$ and $p_{\alpha} \in \Pi_{1}\left(C_{\zeta}\right)$. But this contradicts the minimality in the definition of $\gamma(\alpha)$.

We similarly construct g_{2} on B_{2} so that $g_{2} \mid B_{2}$ intersects every C_{ζ}. Now, let $g_{1}=f$ on $B_{2}, g_{2}=f$ on B_{1} and let $g_{3}=-g_{1}$ on B_{1} and $g_{3}=-g_{2}$ on B_{2}. Note that the graph of g_{3} intersects every C_{ζ} and $f=\sum_{i=1}^{3} g_{i}$. It follows from the following lemma that g_{i} is almost continuous for $i=1,2,3$.

The following lemma appears in both [2] and [3, Theorem 1.2]; our proof is different, however, so we include it with this note.

Lemma 1 Suppose $g:[0,1] \rightarrow(-1,1)$ is such that the graph of g intersects every C_{ζ}. Then, g is almost continuous.

Proof. Let $U \subset[0,1] \times(-1,1)$ be an open set containing the graph of g. Then, $(0, g(0)) \in U$ so

$$
s \equiv \sup \{t: \exists \text { a continuous } h:[0, t] \rightarrow(-1,1)\}>0
$$

Assume $s<1$. As $(s, g(s)) \in U$ there is a $\delta>0$ such that $S \equiv(s-\delta, s+\delta) \times$ $(g(s)-\delta, g(s)+\delta) \subset U$. Let $s-\delta / 2<t_{*}<s$ and let $h:\left[0, t_{*}\right] \rightarrow(-1,1)$ be continuous and $h \subset U$. If $\left.h\right|_{\left[s-\delta, t_{.}\right]} \cap S \neq \emptyset$ then h can be extended continuously to $[0, s+\delta]$ contradicting the maximality of s. Hence, we may assume $\left.h\right|_{\left[s-\delta, t_{*}\right]} \cap S=\emptyset$ and hence, $\left.h\right|_{\left[s-\delta, t_{\cdot}\right]}$ is either above or below S. For definiteness, suppose it is above and define

$$
F=\left\{p \in[0,1] \times(-1,1): \Pi_{1}(p) \in\left[s-\frac{\delta}{2}, t_{*}\right] \text { and } \Pi_{2}(p) \in\left[g(s), h\left(\Pi_{1}(p)\right)\right]\right\}
$$

Then $K \equiv F \cap U^{c}$ is closed and K does not intersect the graph of g. If $\Pi_{1}(K)$ is of cardinality \mathbf{c}, then this leads to a contradiction as the graph of g intersects every C_{ζ}. Hence we may assume that $\Pi_{1}(K)$ is not of cardinality \mathbf{c} and choose an $x_{0} \in\left[s-\frac{\delta}{2}, t_{*}\right]$ such that the line segment $\left[\left(x_{0}, g(s)\right),\left(x_{0}, h\left(x_{0}\right)\right)\right]$ misses K. But then, there is an $\varepsilon>0$ for which

$$
\left\{(x, y): x \in\left[x_{0}-\varepsilon, x_{0}+\varepsilon\right], y \in[g(s), h(x)]\right\} \subset U
$$

and again, h can be extended to $[0, s+\delta]$ which is a contradiction. Thus, we have shown that $s<1$ leads to a contradiction. Hence, $s=1$. Using an argument similar to the above, it can be easily shown that

$$
1 \in\{t: \exists \text { a continuous } h:[0, t] \rightarrow(-1,1)\} .
$$

Hence, g is almost continuous.

References

[1] Z. Grande, A. Maliszewski and T. Natkaniec, Some problems concerning almost continuous functions, Proceedings of the 1994 Lódź Summer Workshop, submitted.
[2] K.R. Kellum and B.D. Garret, Almost continuous real functions, Proc. Amer. Math. Soc. 33(1972), 181-184.
[3] T. Natkaniec, Almost continuity, Real Analysis Exchange 17(1991-92), 462520.

[^0]: Key Words: almost continuous
 Mathematical Reviews subject classification: Primary: 26A15 54C08
 Received by the editors October 15, 1994
 *The results of this note were obtained during the Joint US-Polish Workshop in Real Analysis, Lódź, Poland, July 1994. The Workshop was partially supported by the NSF grant INT-9401673.

