Real Analysis Exchange Vol. 20(1), 1994/95, pp. 359-362

Bernd Kirchheim, Institute of applied mathematics, Comenius University, 842 15 Bratislava, Slovakia, (e-mail: kirchheim@fmph.uniba.sk)

DESCRIPTIVE MAPPING PROPERTIES OF **TYPICAL CONTINUOUS FUNCTIONS**

Abstract

We show that a typical continuous real function generates all analytic sets as image of G_{δ} -sets and all Borel sets as injective images of G_{δ} -sets.

In this note we answer a question posed by G. Petruska during the K&Kseminar in Salzburg, October 93.

Problem 1 Is it true that for typical real valued continuous functions f on [0,1] there always exists a G_{δ} -set whose f-image is not a Borel set?

The affirmative answer is contained in the following stronger result.

Theorem 2 For typical continuous f on [0,1] and for any analytic set $A \subset$ f([0,1]) there exists a G_{δ} -set M with f(M) = A. Moreover, in the same situation each Borel subset of f([0, 1]) is an injective f-image of some G_{δ} -set.

The proof is based on the standard idea to represent analytic sets as projections of G_{δ} plane sets and to use squarefilling Peano curves. However, since a typical curve is not squarefilling (e.g. the image has Hausdorff dimension one), we have to proceed more carefully. Before proving the Theorem we need two auxiliary results.

Lemma 3 Let (X, ρ) be a metric space, $F \subset X$ closed and $M \subset X \setminus F$. If for each $\varepsilon > 0$ the set $\{x \in M ; dist(x, F) > \varepsilon\}$ is G_{δ} in X, then M itself is a G_{δ} -set.

PROOF. We denote $U_0 = \{x ; dist(x, F) > 1\}$ and

$$U_i = \left\{ x \ ; \ \frac{1}{i + \frac{4}{3}} < \operatorname{dist}(x, F) < \frac{1}{i - \frac{1}{3}} \right\} \ ext{for} \ i \ge 1.$$

Key Words: analytic and Borel sets, continuous and injective image, typical continuous function and Peano curves Mathematical Reviews subject classification: Primary: 28A05, 26A99

Received by the editors April 12, 1994

Since $\bigcup_{i=0}^{\infty} U_i = X \setminus F$, we need only to show that $M \cap V$, $M \cap W$ and $M \cap U_0$ are G_{δ} -sets, where $V = \bigcup_{i=1}^{\infty} U_{2i}$ and $W = \bigcup_{i=1}^{\infty} U_{2i-1}$. Obviously, $U_0 \cap M$ is G_{δ} due to the assumption. Moreover, also for each $i \ge 1$ $M \cap U_i = U_i \cap \left\{ x \in M \; ; \; \operatorname{dist}(x,F) > \frac{1}{i+\frac{4}{3}} \right\}$ is a G_{δ} -set. Hence we find open sets $G_i^j \subset U_i$, $j \ge 1$, with $\bigcap_{j=1}^{\infty} G_i^j = M \cap U_i$. Since $U_i \cap U_{i'} = \emptyset$ for $|i-i'| \ge 2$, we see that both $V \cap M = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} G_{2i}^j = \bigcap_{j=1}^{\infty} \bigcup_{i=1}^{\infty} G_{2i}^j$ and $W \cap M = \bigcap_{j=1}^{\infty} \bigcup_{i=1}^{\infty} G_{2i-1}^j$ are G_{δ} -sets. \Box

The next statement showing that a typical function is essentially the xcoordinate of a squarefilling curve, is the "heart" of the paper.

Proposition 4 Let D, E be dense subsets of \mathbb{R} . Then for typical continuous $f : [0,1] \to \mathbb{R}$ and for any $\varepsilon > 0$ there exists a compact set $C \subset [0,1]$ and continuous $g : [0,1] \to [0,1]$ such that

(1) {(f(x), g(x)); $x \in C$ } = [min $f([0, 1]) + \varepsilon$, max $f([0, 1]) - \varepsilon$] × [0, 1]

and that the map

(2)
$$t \to (f(t), g(t))$$
 is injective on $C \setminus (f^{-1}(D) \cup g^{-1}(E))$.

PROOF. We use the Banach-Mazur game, see [1], to show that for any $\varepsilon > 0$ the family $\mathcal{M}_{\varepsilon}$ of all $f \in \mathcal{C}([0, 1], \mathbb{R})$ for which there is a $C \subset [0, 1]$ compact and a $g \in \mathcal{C}([0, 1], [0, 1])$ fulfilling (1) and (2) is residual.

The following two simple observations (whose proofs are left to the reader) will be used during the game:

- a) Let K, I be compact intervals, f continuous on K with $f(K) \supset I$ and let $\varepsilon > 0$ be given. Assume max I, min $I \in D$. Then for any N and $\delta > 0$ (we can always assume $\delta \ll \varepsilon$) there is a function $f' \in U(f, \varepsilon)$, a δ -fine division \Im of I having all dividing points in D and there are mutually disjoint closed subintervals $K_{I',i}$ of int K (for $I' \in \Im$ and $1 \leq i \leq N$), such that $f'(K_{I',i}) \supset U(I', \frac{\varepsilon}{4})$ and $|K_{I',i}| < \delta$ holds for any of these intervals.
- b) Let $\{K_{\alpha}, \alpha \in A\}$ be a finite family of mutually disjoint closed intervals, and let g be a continuous function with $g(K_{\alpha}) \subset J$ for some interval J and all α . Whenever nonvoid $J_{\alpha} \subset J$ are selected for all $\alpha \in A$, then we find a continuous g' such that $||g - g'|| \leq |J|$ and that always $g'(K_{\alpha}) \subset J_{\alpha}$.

Now, start the game and let us be given the answer $U_1 \subset \mathcal{C}([0,1],\mathbb{R})$ of the first move of player **A**. We find $f_1 \in U_1$, k_1 with $2^{-k_1} < \varepsilon$ and $U(f_1, 2^{-k_1}) \subset U_1$. We choose $m \in D \cap [\min f_1([0,1]), \min f_1([0,1]) + \frac{\varepsilon}{4}), M \in (\max f_1([0,1]) - \frac{\varepsilon}{4})$

 $\frac{\epsilon}{4}$, max $f_1([0, 1])]$, and (2^{-k_1}) -fine divisions $\mathfrak{I}_1, \mathfrak{J}_1$ of [m, M] and [0, 1] having all dividing points in D and E, respectively. According to the observations we can select mutually disjoint closed intervals $K_{I,J}$, $(I, J) \in \mathfrak{I}_1 \times \mathfrak{J}_1$, not longer than one and contained in int [0, 1], and functions $f_2 \in U(f_1, 2^{-k_1-2})$, $g_2 \in \mathcal{C}([0, 1], [0, 1])$ such that for any pair $(I, J) \in \mathfrak{I}_1 \times \mathfrak{J}_1$ both $f_2(K_{I,J}) \supset$ $U(I, 2^{-k_1-2})$ and $g_2(K_{I,J}) \subset J$ hold. Finally, we return our answer $U_2 =$ $U_1 \cap U(f_2, 2^{-k_1-3})$ to player **A**.

Next, we consider the answer U_3 of **A**. Choose $k_2 > k_1 + 2$ and f_3 with $U(f_3, 2^{-k_2}) \subset U_3$. Since $f_3 \in U_2$, the inclusion $f_3(K_{I,J}) \supset U(I, 2^{-k_1-3})$ holds for any $(I, J) \in \mathfrak{I}_1 \times \mathfrak{J}_1$. We put $g_3 = g_2$ and find $\mathfrak{I}_2, \mathfrak{J}_2$ (2^{-k_2}) -fine divisions refining \mathfrak{I}_1 resp. \mathfrak{J}_1 and again having all the endpoints of the corresponding subintervals in D and E, respectively. Oncemore applying the observations we can select $f_4 \in U(f_3, 2^{-k_2})$, and a map $g_4 \in U(g_3, 2^{-k_1})$ into [0, 1], and mutually disjoint closed intervals $K_{I,J}$ for $(I, J) \in \mathfrak{I}_2 \times \mathfrak{I}_2$ of length at most 1/2 such that $K_{I,J} \subset \operatorname{int}(K_{I',J'})$ if $I \subset I' \in \mathfrak{I}_1, J \subset J' \in \mathfrak{I}_2$ and that $f_4(K_{I,J}) \supset U(I, 2^{-k_2-2}), g_4(K_{I,J}) \subset J$ for any pair from these second divisions. Then we return $U_4 = U_3 \cap U(f_4, 2^{-k_2-3})$.

We continue the game in this way. All we need to show is that for any $f \in \bigcap_{i=1}^{\infty} U_i$ there are g and C fulfilling (1), (2). The way we played the game ensures that $f_n \rightrightarrows f$ and also that the g_n 's form a Cauchy sequence in $\mathcal{C}([\ell,\infty], [\ell,\infty])$. Denote its limit by g. It is obvious that $\max f \leq M + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + 2^{-k_1-3} < M + \frac{3\varepsilon}{4}$ and analogous $\min f > m - \frac{3\varepsilon}{4}$. We also put

$$K_{I,J} = K_{I,J} \cap (f,g)^{-1}(I \times J)$$

for any (I, J) in some $\mathfrak{I}_n \times \mathfrak{J}_n$, and define

$$\tilde{C} = \bigcap_{n \ge 1} \bigcup_{(I,J) \in \mathfrak{I}_n \times \mathfrak{J}_n} \tilde{K}_{I,J}.$$

We claim that always $\{(f(t), g(t)) : t \in K_{I,J}\} = I \times J$, by compactness and monotonicity this implies also (1). To verify the claim it suffices to show that for any $n \ge 1$, $x \in I$, $y \in J$ with $(I, J) \in \mathfrak{I}_n \times \mathfrak{J}_n$, and δ positive there is a $t \in K_{I,J}$ with $|f(t) - x| + |g(t) - y| < \delta$. For this purpose, we fix $N \ge n$ with $2^{-k_{N-1}+3} < \delta$ and $(I', J') \in \mathfrak{I}_N \times \mathfrak{J}_N$ such that $(x, y) \in I' \times J'$. Hence, $I' \times J' \subset I \times J$ and $K_{I',J'} \subset K_{I,J}$. Observe that $||f - f_{2N}|| \le 2^{-k_N-3}$, and $||g - g_{2N}|| \le \sum_{l=N}^{\infty} 2^{-k_{l-1}} \le 2^{-k_{N-1}+1}$. Hence, for $K = K_{I',J'}$ we have $g(K) \subset U(g_{2N}(K), 2^{-k_{N-1}+1}) \subset U(J, 2^{-k_{N-1}+1}) \subset U(y, 2^{-k_N} + 2^{-k_{N-1}+1}) \subset$ $U(y, \frac{\delta}{2})$. Moreover, we know that there is $t \in K$ satisfying $f_{2N}(t) = x$, hence $|f(t) - x| \le 2^{-k_N-3} < \frac{\delta}{2}$ and $|f(t) - x| + |g(t) - y| < \delta$.

Now (2) follows easily. Indeed, let different $t, t' \in \tilde{C} \setminus (f^{-1}(D) \cup g^{-1}(E))$. be given. Since the maximal lenght of the $K_{I,J}$ goes to zero, we find an n and two different pairs $(I, J), (I', J') \in \mathfrak{I}_n \times \mathfrak{J}_n$ such that $t \in \tilde{K}_{I,J}$ and $t' \in \tilde{K}_{I',J'}$. Hence, $f(t) \in \operatorname{int} I, f(t') \in \operatorname{int} I', g(t) \in \operatorname{int} J$, and $g(t') \in \operatorname{int} J'$. But this implies that $(f, g)(t) \neq (f, g)(t')$. Hence, we can choose C to be an appropriate subset of \tilde{C} . \Box

So we can turn to the

PROOF of Theorem 2. We denote $m = \min f([0, 1])$, $M = \max f([0, 1])$ and $F = f^{-1}(\{m, M\})$. Now let A be any analytic set contained in the range of f, obviously we can restrict to the case $A \subset (m, M)$. We decompose A for $k \in \mathbb{Z}$ into the analytic sets

$$A_k = \{t \in A ; \tan(\pi(\frac{f(t)-m}{M-m}-\frac{1}{2})) \in [k,k+1)\}.$$

Therefore, we can always choose plane G_{δ} -sets S_k contained in $A_k \times [0, 1]$ with $A_k = \operatorname{proj}_x(S_k)$. Now Proposition 4 ensures the existence of a continuous map $g_k : [0,1] \to [0,1]$ such that the range of the map $h_k(t) = (f(t), g_k(t))$ contains the whole set S_k (and even its convex hull). Therefore, the G_{δ} -set $G_k = h_k^{-1}(S_k) \subset [0,1]$ is mapped onto A_k by f. So we are done if we prove that $G = \bigcup_{k \in \mathbb{Z}} G_k$ is a G_{δ} -set again. Obviously, $G \cap F = \emptyset$. Further, compactness easily implies that for any ε positive $\{x \in G ; \operatorname{dist}(x, F) > \varepsilon\}$ is an open subset of some finite union of G_k 's, and consequently also an G_{δ} -set. Hence, an application of Lemma 3 finishes the first part of the proof.

In the second part, let $B \subset (m, M)$ be any Borel set. Obviously, it suffices to proof that $B^1 = B \setminus \mathbb{Q}$ as well as $B^2 = B \cap \mathbb{Q}$ are injective f images of some G_{δ} -sets. We define the B_k^1 's and B_k^2 's analogously to the A_k 's. Since these sets form a partition of B, again it suffices to show that each single B_k^i is of the desired kind, i.e. is an injective f-image of some G_{δ} -set G_k^i . For i = 1 we set $D = \mathbb{Q}$, for i = 2 $D = \mathbb{R} \setminus \mathbb{Q}$ and $E = \mathbb{Q}$ in both cases. Because B_k^i is Borel, there is a relatively closed subset S_k^i of $[0,1] \times ([0,1] \setminus E)$ which is under the x-projection injectively mapped onto B_k^i . Obviously, S_k^i is of type G_{δ} in the plane and according to Proposition 4 there is a compact set $C \in [0,1]$ and a continuous $g : C \to [0,1]$ such that $(f,g)(C) \supset S_k^i$. Moreover, the G_{δ} -set $G_k^i = C \cap (f,g)^{-1}(S_k^i)$ is disjoint with $f^{-1}(D) \cup g^{-1}(E)$. From (2) we know that (f,g) maps this set injectively onto S_k^i . Since $f = \operatorname{proj}_x \circ (f,g)$, we are done.

References

 J.Oxtoby, The Banach-Mazur Game and Banach Category Theorem, Contributions to the Theory of Games (ed. Dresher, Tucker, Wolfe), Ann. Math. Studies 39, p. 159-163.