ON ITERATIONS OF DARBOUX FUNCTIONS

Abstract

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is weakly connected and for every $x \in \mathbb{R}$ there is an n_{x} with $f^{n_{x}}(x)=1$ then $f(1)=1$. The analogous result holds for any Darboux function f for which the set of all n_{x} is bounded above.

Let us establish some terminology to be used. Denote by \mathbb{R} and \mathbb{Q} the sets of reals and rationals, respectively, and by I the unit interval. We shall consider only real-valued functions of a real variable. No distinction is made between a function and its graph. Let:
\mathcal{C} - denote the class of all continuous functions;
$\mathcal{C} o n n$ - denote the class of all connected functions (i.e., functions whose graphs are connected in \mathbb{R}^{2});
$\mathcal{C} o n n_{w}$ - denote the class of all weakly connected functions. A function f is said to be weakly connected if for every interval $J, f \mid J$ can be separated by no continuous function $h: J \rightarrow \mathbb{R}$ (that is, $f \cap h=\emptyset$ implies that f intersects no more than one component of $(J \times \mathbb{R}) \backslash h[3])$;
\mathcal{D} - denote the class of Darboux functions, (i.e., functions which have the intermediate value property).

Obviously $\mathcal{C} \subset \mathcal{C}$ onn $\subset \mathcal{C} o n n_{w} \subset \mathcal{D}$.
Proposition 1 For every $A \subset \mathbb{R}$ the following conditions are equivalent:
(i) A is a bounded subset of \mathbb{R};

[^0](ii) if f is a weakly connected function such that for every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ with $f^{n}(x) \in A$, then $f(x)=x$ for some $x \in A$.

Proof. $(i) \Rightarrow(i i)$. Let $a=\inf (A)$ and $b=\sup (A)$. Note that $f(b) \leq b$ and $f(a) \geq a$. Indeed, suppose $f(b)>b$. Since $f^{n}(b) \leq b$ for some $n>1$, $f(x) \leq b$ for some $x>b$. So $f \mid(b, x)$ intersects the identity function and therefore $f(t)=t$ for some $t \notin A$. Consequently, $f^{n}(t) \notin A$ for all $n \in \mathbb{N}$, a contradiction. Analogously we can verify that $f(a) \geq a$. Since f is weakly connected, it intersects the identity and therefore $f(x)=x$ for some $x \in[a, b]$. Since $f(x)=x$ for all $n \in \mathbb{N}, x$ is in A.
(ii) $\Rightarrow(i)$. Assume that A is unbounded above and $\left(a_{n}\right)_{n}$ is a strictly increasing sequence in A such that $\lim _{n} a_{n}=\infty$. Set $b_{n, m}=a_{n}+(1-$ $\left.2^{-m}\right)\left(a_{n+1}-a_{n}\right)$ for all $n, m \in \mathbb{N}$ and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}a_{1} & \text { if } x \leq a_{0}, \\ a_{n+1} & \text { if } x \in\left[a_{n}, b_{n, 1}\right], n \in \mathbb{N} \\ \text { linear } & \text { if } x \in\left[b_{n, 1}, a_{n+1}\right], n \in \mathbb{N}\end{cases}
$$

Obviously, f is continuous. Fix $x \geq a_{0}$. Then $x \in\left[b_{n, m}, b_{n, m+1}\right)$ for some $n, m \in \mathbb{N}$ and $f^{m+1}(x)=a_{n+m+1}$. Moreover, $f(x)>x$ for each $x \in \mathbb{R}$.

Corollary 1 If f is weakly connected and for every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $f^{n}(x)=1$, then $f(1)=1$.

The analogous result does not hold for all Darboux functions.
Proposition 2 There exists a Darboux function f such that
(1) $f(1) \neq 1$,
(2) for every $x \in \mathbb{R}$ there exists an $n \in \mathbb{N}$ with $f^{n}(x)=1$.

Proof. Let \mathcal{B} be a countable base of \mathbb{R}. Arrange all elements of the set $\mathcal{B} \times \mathbb{R}$ in a sequence $\left(I_{\alpha}, y_{\alpha}\right)_{\alpha<2^{\omega}}$. For every $\alpha<2^{\omega}$ choose an

$$
x_{\alpha} \in I_{\alpha} \backslash\left(\left\{x_{\beta}, y_{\beta}: \beta<\alpha\right\} \cup\{0,1\} \cup\left\{y_{\alpha}\right\}\right)
$$

Put

$$
f(x)= \begin{cases}0 & \text { if } x=1 \\ 1 & \text { if } x=0 \\ y_{\alpha} & \text { if } x=x_{\alpha}, \alpha<2^{\omega} \\ 1 & \text { otherwise }\end{cases}
$$

Obviously f is Darboux and $f(1) \neq 1$. We shall verify the condition (2). Evidently, it is sufficient to consider only $x \in Z=\left\{x_{\alpha}: \alpha<2^{\omega}\right\}$. Suppose
that $f^{n}\left(x_{\alpha}\right) \neq 1$ for all $n \in \mathbb{N}$. Then $f^{n}\left(x_{\alpha}\right) \in Z$ for all n. Set $f^{n}\left(x_{\alpha}\right)=x_{\alpha_{n}}$. Then $x_{\alpha_{1}}=f\left(x_{\alpha}\right)=y_{\alpha}$, so $\alpha_{1}<\alpha$ and $x_{\alpha_{n+1}}=f\left(x_{\alpha_{n}}\right)=y_{\alpha_{n}}$, so $\alpha_{n+1}<\alpha_{n}$ for each n. Consequently, $\left(\alpha_{n}\right)_{n}$ is a strictly decreasing sequence of ordinals, which is impossible.
Remarks: 1. Since every Darboux function in the first class of Baire is connected [4], then no such function fulfills (1) and (2). We are unable to determine wheather or not there exists a Borel measurable Darboux function which fulfills (1) and (2).
2. Using the analogous arguments and standard methods of the construction of quasi-continuous functions possessing the Darboux property (see, e.g., [5]) we can construct a measurable quasi-continuous Darboux function which fulfills (1) and (2). Indeed, let C be the Cantor ternary set, \mathcal{J}_{n} be the family of all components of the set $\mathbf{I} \backslash C$ of the n-th order (i.e. whose length is equal to $\left.3^{-n}\right), C_{0}=C \backslash\left\{\operatorname{cl}(J): J \in \mathcal{J}_{n}\right.$ for some $\left.n \in \mathbb{N}\right\}$. Arrange all rationals in a sequence $\left(t_{n}\right)_{n}$. Let $\left(q_{n}\right)_{n}$ and $\left(k_{n}\right)_{n}$ be sequences of rationals and of positive integers, respectively, defined as follows:
(1) $q_{1}=t_{1}$ and $k_{1}=2$;
(2)

$$
q_{n+1}= \begin{cases}1 & \text { if }\left\{q_{1}, \ldots, q_{n}\right\} \cap \bigcup \mathcal{J}_{n+1} \neq \emptyset \\ t_{k_{n}} & \text { otherwise }\end{cases}
$$

(3) $k_{n+1}=\min \left\{k: t_{k} \neq q_{i}\right.$ for $\left.i=1, \ldots, n+1\right\}$.

Observe that for every $q \in \mathbb{Q}$ there exists $n \in \mathbb{N}$ with $q=q_{n}$. Let \mathcal{B} denote a countable base of C_{0}. Arrange all elements of the set $\mathcal{B} \times \mathbb{R}$ in a sequence $\left(J_{\alpha}, y_{\alpha}\right)_{\alpha<2^{\omega}}$. For every $\alpha<2^{\omega}$ choose an

$$
x_{\alpha} \in J_{\alpha} \backslash\left(\mathbb{Q} \cup\left\{x_{\beta}, y_{\beta}: \beta<\alpha\right\} \cup\left\{y_{\alpha}\right\}\right)
$$

and put

$$
f(x)= \begin{cases}0 & \text { if } x=1 \\ 1 & \text { if } x=0 \\ y_{\alpha} & \text { for } x=x_{\alpha}, \alpha<2^{\omega} \\ q_{n} & \text { for } x \in \bigcup\left\{\operatorname{cl}(J): J \in \mathcal{J}_{n}, q_{n} \notin J\right\}, n \in \mathbb{N} \\ 1 & \text { otherwise }\end{cases}
$$

Then f has all desired properties.
Let \mathcal{I} be an ideal of boundary subsets of \mathbb{R}. We shall say that a function f is \mathcal{I}-conservative whenever $f(A) \in \mathcal{I}$ for all $A \in \mathcal{I}$.

Proposition 3 Assume that f is an \mathcal{I}-conservative Darboux function, $A \in \mathcal{I}$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ with $f^{i}(x) \in A$. Then there exists exactly one $a \in A$ such that $f(a)=a$.
Proof. We can assume that $n=\min \left\{k \in \mathbb{N}: \forall(x \in \mathbb{R}) \exists(i \leq k) f^{i}(x) \in A\right\}$ and $A \subset f(\mathbb{R})$. Put $A_{0}=A$ and $A_{i}=\left\{x: f^{i}(x) \in A\right\}$ for $i=1, \ldots, n$. Note that $\mathbb{R}=\bigcup_{i=1}^{n} A_{i}, f\left(A_{i}\right) \subset A_{i-1}$ for $i=1, \ldots, n$ and $A_{n} \neq \emptyset$. Since f is Darboux, f^{i} is Darboux for every i. Hence $J_{i}=f^{i}(\mathbb{R})$ is an interval for $i=1, \ldots, n$. Observe that $J_{1}=f(\mathbb{R}) \subset \bigcup_{i=0}^{n-1} A_{i}$ and $A \subset J_{1} ; J_{2}=f\left(J_{1}\right) \subset$ $f(A) \cup \bigcup_{i=0}^{n-2} A_{i}$ and $f(A) \subset J_{2} ; \ldots ; J_{n}=f\left(J_{n-1}\right) \subset\left(A \cup f(A) \ldots f^{n-1}(A)\right)$ and $f^{n-1}(A) \subset J_{n}$. Since f is \mathcal{I}-conservative, J_{n} is a boundary set and consequently, it is a singleton. Let $J_{n}=\left\{a_{0}\right\}$. Clearly, $A \cap J_{n} \neq \emptyset$, so $a_{0} \in A$ and $f^{n-1}\left(a_{0}\right)=a_{0}$. Hence $a_{0} \in J_{n-1}, f\left(a_{0}\right) \in J_{n}$ and consequently, $f\left(a_{0}\right)=a_{0}$.

Now suppose $f(a)=a$ for some $a \in A$. Then $a=f^{n}(a)=a_{0}$.
Corollary 2 Assume that f is a Darboux function, $A \subset \mathbb{R}, \operatorname{card}(A)<2^{\omega}$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ such that $f^{i}(x) \in A$. Then $f(a)=a$ for exactly one $a \in A$.

Let \mathcal{N} denote the ideal of all Lebesgue measure zero sets. We say that a function f satisfies the Lusin condition (N) iff f is \mathcal{N}-conservative. It is wellknown (and easy to obtain) that every Lipschitz function satisfies the condition $(N) .\left(f\right.$ is a Lipschitz function if there exists an $L>0$ with $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right| \leq$ $L\left|x_{1}-x_{0}\right|$ for all $x_{0}, x_{1} \in \mathbb{R}$.)

Corollary 3 Assume that f is a Darboux function which satisfies the condition $(N), A \in \mathcal{N}, n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ with $f^{i}(x) \in A$. Then $f(a)=a$ for exactly one $a \in A$.
$A \subset \mathbb{R}$ is called to be a strong measure zero set iff given any sequence $\left(\varepsilon_{n}\right)_{n}$ of positive numbers, A can be covered by a sequence of sets $\left(A_{n}\right)_{n}$ with $\operatorname{diam}\left(A_{n}\right)<\varepsilon_{n}$ (where $\operatorname{diam}(A)$ denotes the diameter of $\left.A\right)$ [1]. Let \mathcal{S} denote the class of all strong measure zero sets. Recall that $f(A)$ is strong measure zero whenever f is continuous and $A \in \mathcal{S}$ [6].

Corollary 4 Assume that f is continuous, $A \in \mathcal{S}, n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ such that $f^{i}(x) \in A$. Then $f(a)=a$ for exactly one $a \in A$.

Note that there exist Darboux functions f with $f^{2}(x)=1$ for all $x \in \mathbb{R}$ which are discontinuous.

Though in Proposition 1 the assumption of boundedness of A cannot be dropped, we have the following:

Proposition 4 Assume that f is a Darboux function and for each $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ with $f^{n}(x)=x$. Then either $f=\operatorname{id}_{\mathbb{R}}$ (where id $\mathbb{R}_{\mathbb{R}}$ denotes the identity on \mathbb{R}) or f is continuous and decreasing with $f=f^{-1}$.
Proof. First note that f is injective. Indeed, suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1} \neq x_{2}$. Set $n_{1}=\min \left\{n: f^{n}\left(x_{1}\right)=x_{1}\right\}$ and $n_{2}=\min \left\{n: f^{n}\left(x_{2}\right)=x_{2}\right\}$. If $n_{1}=n_{2}$ then $x_{1}=x_{2}$. So we may assume that $n_{1}<n_{2}$. Let $n_{2}=$ $k n_{1}+r$, where $k, r \in \mathbb{N}$ and $0 \leq r<n_{1}$. Then $x_{2}=f^{n_{2}}\left(x_{2}\right)=f^{n_{2}}\left(x_{1}\right)=$ $f^{r}\left(\left(f^{n_{1}}\right)^{k}\left(x_{1}\right)\right)=f^{r}\left(x_{1}\right)=f^{r}\left(x_{2}\right)$, a contradiction. Hence f is continuous (see, e.g., [2]) and monotonic. We consider two casses.
(1.) f is increasing. Fix an $x \in \mathbb{R}$. Then f^{n} is increasing and (by induction) $f^{n}(x)>x$ whenever $f(x)>x$ and $f^{n}(x)<x$ whenever $f(x)<x$ for each $n \in \mathbb{N}$. Hence $f(x)=x$ and $f=\operatorname{id}_{\mathbf{R}}$.
(2.) f is decreasing. Fix an $x \in \mathbb{R}$ and put $x_{1}=f(x)$. We shall verify that $f\left(x_{1}\right)=x$. Obviously it is sufficient to consider that $x_{1} \neq x$, so either $x<x_{1}$ or $x_{1}<x$.
(2.1.) Assume $x<x_{1}$ and suppose that $f\left(x_{1}\right) \neq x$, so either $f\left(x_{1}\right)<x$ or $f\left(x_{1}\right)>x$.
(2.1.1.) Suppose $f\left(x_{1}\right)<x$. We can prove by induction that $f^{n}(x)>x$ when n is odd and $f^{n}(x)<x$ when n is even. In fact, this is true for $n=1$ and $n=2$. Assume that $f^{2 n+1}(x)>x$ and $f^{2 n+2}(x)<x$. Then $f^{2 n+3}(x)>$ $f(x)=x_{1}>x$. Moreover, $f^{2 n+4}(x)<f\left(x_{1}\right)<x$, which completes the induction. Thus $f^{n}(x) \neq x$ for all positive integer n, a contradiction.
(2.1.2.) Let $f\left(x_{1}\right)>x$. We verify by induction that $x<f^{n}(x)<x_{1}$ for all $n>1$, which contradicts the assumption on f.

Therefore $f\left(x_{1}\right)=x$ if $x<x_{1}$.
(2.2.) Now suppose that $x_{1}<x$. Since f is decreasing, $f(f(x))>f(x)$. Then, by (2.1.), $f^{3}(x)=f(x)$. Since f is injective, $f^{2}(x)=x$, so $f\left(x_{1}\right)=x$.

References

[1] E. Borel, Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France 47 (1919), 97-125.
[2] A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deut. Math. Ver. 67 (1965), 93-117.
[3] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22 (1972), 435-448.
[4] K. Kuratowski and W. Sierpiński, Les fonctions de classe 1 et les ensembles connexes punctiformes, Fund. Math. 3 (1922), 303-313.
[5] T. Natkaniec, On quasi-continuous functions having Darboux property, Math. Pannonica 3 (1992), 81-96.
[6] E. Szpilrajn-Marczewski, Sur une hypothese de M. Borel, Fund. Math. 15 (1930), 126-127.

[^0]: Key Words: Darboux function, weakly connected function, quasi-continuous function, Lusin condition (N), strong measure zero set, fixed point

 Mathematical Reviews subject classification: Primary 26A18. Secondary 26A15, 47H10 Received by the editors March 14, 1994
 *Supported by KBN Research Grant 1992-94, 211449101.

