Tomasz Natkaniec, Mathematical Institute WSP, Chodkiewicza 30, 85–064 Bydgoszcz, Poland (e-mail: wspb11@pltumk11.bitnet)

ON ITERATIONS OF DARBOUX FUNCTIONS

Abstract

If $f : \mathbb{R} \to \mathbb{R}$ is weakly connected and for every $x \in \mathbb{R}$ there is an n_x with $f^{n_x}(x) = 1$ then f(1) = 1. The analogous result holds for any Darboux function f for which the set of all n_x is bounded above.

Let us establish some terminology to be used. Denote by \mathbb{R} and \mathbb{Q} the sets of reals and rationals, respectively, and by I the unit interval. We shall consider only real-valued functions of a real variable. No distinction is made between a function and its graph. Let:

- C denote the class of all continuous functions;
- Conn denote the class of all connected functions (i.e., functions whose graphs are connected in \mathbb{R}^2);
- $Conn_w$ denote the class of all weakly connected functions. A function f is said to be *weakly connected* if for every interval J, f|J can be separated by no continuous function $h: J \to \mathbb{R}$ (that is, $f \cap h = \emptyset$ implies that f intersects no more than one component of $(J \times \mathbb{R}) \setminus h$ [3]);
- \mathcal{D} denote the class of Darboux functions, (i.e., functions which have the intermediate value property).

Obviously $\mathcal{C} \subset \mathcal{C}onn \subset \mathcal{C}onn_w \subset \mathcal{D}$.

Proposition 1 For every $A \subset \mathbb{R}$ the following conditions are equivalent:

(i) A is a bounded subset of \mathbb{R} ;

Key Words: Darboux function, weakly connected function, quasi-continuous function, Lusin condition (N), strong measure zero set, fixed point

Mathematical Reviews subject classification: Primary 26A18. Secondary 26A15, 47H10 Received by the editors March 14, 1994

^{*}Supported by KBN Research Grant 1992-94, 2 1144 91 01.

ITERATIONS OF DARBOUX FUNCTIONS

(ii) if f is a weakly connected function such that for every $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ with $f^n(x) \in A$, then f(x) = x for some $x \in A$.

PROOF. $(i) \Rightarrow (ii)$. Let $a = \inf(A)$ and $b = \sup(A)$. Note that $f(b) \leq b$ and $f(a) \geq a$. Indeed, suppose f(b) > b. Since $f^n(b) \leq b$ for some n > 1, $f(x) \leq b$ for some x > b. So f|(b,x) intersects the identity function and therefore f(t) = t for some $t \notin A$. Consequently, $f^n(t) \notin A$ for all $n \in \mathbb{N}$, a contradiction. Analogously we can verify that $f(a) \geq a$. Since f is weakly connected, it intersects the identity and therefore f(x) = x for some $x \in [a, b]$. Since f(x) = x for all $n \in \mathbb{N}$, x is in A.

 $(ii) \Rightarrow (i)$. Assume that A is unbounded above and $(a_n)_n$ is a strictly increasing sequence in A such that $\lim_n a_n = \infty$. Set $b_{n,m} = a_n + (1 - 2^{-m})(a_{n+1} - a_n)$ for all $n, m \in \mathbb{N}$ and define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} a_1 & \text{if } x \le a_0, \\ a_{n+1} & \text{if } x \in [a_n, b_{n,1}], n \in \mathbb{N}, \\ \text{linear} & \text{if } x \in [b_{n,1}, a_{n+1}], n \in \mathbb{N}. \end{cases}$$

Obviously, f is continuous. Fix $x \ge a_0$. Then $x \in [b_{n,m}, b_{n,m+1})$ for some $n, m \in \mathbb{N}$ and $f^{m+1}(x) = a_{n+m+1}$. Moreover, f(x) > x for each $x \in \mathbb{R}$. \Box

Corollary 1 If f is weakly connected and for every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $f^n(x) = 1$, then f(1) = 1.

The analogous result does not hold for all Darboux functions.

Proposition 2 There exists a Darboux function f such that

- (1) $f(1) \neq 1$,
- (2) for every $x \in \mathbb{R}$ there exists an $n \in \mathbb{N}$ with $f^n(x) = 1$.

PROOF. Let \mathcal{B} be a countable base of \mathbb{R} . Arrange all elements of the set $\mathcal{B} \times \mathbb{R}$ in a sequence $(I_{\alpha}, y_{\alpha})_{\alpha < 2^{\omega}}$. For every $\alpha < 2^{\omega}$ choose an

$$x_{lpha} \in I_{lpha} \setminus \left(\{ x_{eta}, y_{eta} : \ eta < lpha \} \cup \{ 0, 1 \} \cup \{ y_{lpha} \}
ight).$$

Put

$$f(x) = \begin{cases} 0 & \text{if } x = 1, \\ 1 & \text{if } x = 0, \\ y_{\alpha} & \text{if } x = x_{\alpha}, \alpha < 2^{\omega} \\ 1 & \text{otherwise.} \end{cases}$$

Obviously f is Darboux and $f(1) \neq 1$. We shall verify the condition (2). Evidently, it is sufficient to consider only $x \in Z = \{x_{\alpha} : \alpha < 2^{\omega}\}$. Suppose that $f^n(x_{\alpha}) \neq 1$ for all $n \in \mathbb{N}$. Then $f^n(x_{\alpha}) \in Z$ for all n. Set $f^n(x_{\alpha}) = x_{\alpha_n}$. Then $x_{\alpha_1} = f(x_{\alpha}) = y_{\alpha}$, so $\alpha_1 < \alpha$ and $x_{\alpha_{n+1}} = f(x_{\alpha_n}) = y_{\alpha_n}$, so $\alpha_{n+1} < \alpha_n$ for each n. Consequently, $(\alpha_n)_n$ is a strictly decreasing sequence of ordinals, which is impossible. \Box

Remarks: 1. Since every Darboux function in the first class of Baire is connected [4], then no such function fulfills (1) and (2). We are unable to determine wheather or not there exists a Borel measurable Darboux function which fulfills (1) and (2).

2. Using the analogous arguments and standard methods of the construction of quasi-continuous functions possessing the Darboux property (see, e.g., [5]) we can construct a measurable quasi-continuous Darboux function which fulfills (1) and (2). Indeed, let C be the Cantor ternary set, \mathcal{J}_n be the family of all components of the set $I \setminus C$ of the *n*-th order (i.e. whose length is equal to 3^{-n}), $C_0 = C \setminus \{cl(J) : J \in \mathcal{J}_n \text{ for some } n \in \mathbb{N}\}$. Arrange all rationals in a sequence $(t_n)_n$. Let $(q_n)_n$ and $(k_n)_n$ be sequences of rationals and of positive integers, respectively, defined as follows:

(1)
$$q_1 = t_1$$
 and $k_1 = 2$;

(2)

$$q_{n+1} = \begin{cases} 1 & \text{if } \{q_1, \dots, q_n\} \cap \bigcup \mathcal{J}_{n+1} \neq \emptyset, \\ t_{k_n} & \text{otherwise;} \end{cases}$$

(3)
$$k_{n+1} = \min\{k : t_k \neq q_i \text{ for } i = 1, ..., n+1\}$$

Observe that for every $q \in \mathbb{Q}$ there exists $n \in \mathbb{N}$ with $q = q_n$. Let \mathcal{B} denote a countable base of C_0 . Arrange all elements of the set $\mathcal{B} \times \mathbb{R}$ in a sequence $(J_{\alpha}, y_{\alpha})_{\alpha < 2^{\omega}}$. For every $\alpha < 2^{\omega}$ choose an

$$x_{lpha} \in J_{lpha} \setminus (\mathbb{Q} \cup \{x_{eta}, y_{eta} : \ eta < lpha\} \cup \{y_{lpha}\})$$

and put

$$f(x) = \begin{cases} 0 & \text{if } x = 1, \\ 1 & \text{if } x = 0, \\ y_{\alpha} & \text{for } x = x_{\alpha}, \, \alpha < 2^{\omega}, \\ q_{n} & \text{for } x \in \bigcup \{ \text{cl} (J) : J \in \mathcal{J}_{n}, \, q_{n} \notin J \}, \, n \in \mathbb{N} \\ 1 & \text{otherwise.} \end{cases}$$

Then f has all desired properties.

Let \mathcal{I} be an ideal of boundary subsets of \mathbb{R} . We shall say that a function f is \mathcal{I} -conservative whenever $f(A) \in \mathcal{I}$ for all $A \in \mathcal{I}$.

Proposition 3 Assume that f is an \mathcal{I} -conservative Darboux function, $A \in \mathcal{I}$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ with $f^i(x) \in A$. Then there exists exactly one $a \in A$ such that f(a) = a.

PROOF. We can assume that $n = \min\{k \in \mathbb{N} : \forall (x \in \mathbb{R}) \exists (i \leq k) f^i(x) \in A\}$ and $A \subset f(\mathbb{R})$. Put $A_0 = A$ and $A_i = \{x : f^i(x) \in A\}$ for i = 1, ..., n. Note that $\mathbb{R} = \bigcup_{i=1}^n A_i$, $f(A_i) \subset A_{i-1}$ for i = 1, ..., n and $A_n \neq \emptyset$. Since fis Darboux, f^i is Darboux for every i. Hence $J_i = f^i(\mathbb{R})$ is an interval for i = 1, ..., n. Observe that $J_1 = f(\mathbb{R}) \subset \bigcup_{i=0}^{n-1} A_i$ and $A \subset J_1; J_2 = f(J_1) \subset$ $f(A) \cup \bigcup_{i=0}^{n-2} A_i$ and $f(A) \subset J_2; ...; J_n = f(J_{n-1}) \subset (A \cup f(A) \dots f^{n-1}(A))$ and $f^{n-1}(A) \subset J_n$. Since f is \mathcal{I} -conservative, J_n is a boundary set and consequently, it is a singleton. Let $J_n = \{a_0\}$. Clearly, $A \cap J_n \neq \emptyset$, so $a_0 \in A$ and $f^{n-1}(a_0) = a_0$. Hence $a_0 \in J_{n-1}, f(a_0) \in J_n$ and consequently, $f(a_0) = a_0$.

Now suppose f(a) = a for some $a \in A$. Then $a = f^n(a) = a_0$. \Box

Corollary 2 Assume that f is a Darboux function, $A \subset \mathbb{R}$, card $(A) < 2^{\omega}$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ such that $f^i(x) \in A$. Then f(a) = a for exactly one $a \in A$.

Let \mathcal{N} denote the ideal of all Lebesgue measure zero sets. We say that a function f satisfies the *Lusin condition* (N) iff f is \mathcal{N} -conservative. It is well-known (and easy to obtain) that every Lipschitz function satisfies the condition (\mathcal{N}) . (f is a *Lipschitz* function if there exists an L > 0 with $|f(x_1) - f(x_0)| \leq L|x_1 - x_0|$ for all $x_0, x_1 \in \mathbb{R}$.)

Corollary 3 Assume that f is a Darboux function which satisfies the condition (N), $A \in \mathcal{N}$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ with $f^i(x) \in A$. Then f(a) = a for exactly one $a \in A$.

 $A \subset \mathbb{R}$ is called to be a *strong measure zero set* iff given any sequence $(\varepsilon_n)_n$ of positive numbers, A can be covered by a sequence of sets $(A_n)_n$ with diam $(A_n) < \varepsilon_n$ (where diam (A) denotes the diameter of A) [1]. Let S denote the class of all strong measure zero sets. Recall that f(A) is strong measure zero whenever f is continuous and $A \in S$ [6].

Corollary 4 Assume that f is continuous, $A \in S$, $n \in \mathbb{N}$ and for every $x \in \mathbb{R}$ there exists an $i \leq n$ such that $f^i(x) \in A$. Then f(a) = a for exactly one $a \in A$.

Note that there exist Darboux functions f with $f^2(x) = 1$ for all $x \in \mathbb{R}$ which are discontinuous.

Though in Proposition 1 the assumption of boundedness of A cannot be dropped, we have the following:

Proposition 4 Assume that f is a Darboux function and for each $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ with $f^n(x) = x$. Then either $f = \operatorname{id}_{\mathbb{R}}$ (where $\operatorname{id}_{\mathbb{R}}$ denotes the identity on \mathbb{R}) or f is continuous and decreasing with $f = f^{-1}$.

PROOF. First note that f is injective. Indeed, suppose $f(x_1) = f(x_2)$ for some $x_1 \neq x_2$. Set $n_1 = \min\{n : f^n(x_1) = x_1\}$ and $n_2 = \min\{n : f^n(x_2) = x_2\}$. If $n_1 = n_2$ then $x_1 = x_2$. So we may assume that $n_1 < n_2$. Let $n_2 = kn_1 + r$, where $k, r \in \mathbb{N}$ and $0 \le r < n_1$. Then $x_2 = f^{n_2}(x_2) = f^{n_2}(x_1) = f^r\left((f^{n_1})^k(x_1)\right) = f^r(x_1) = f^r(x_2)$, a contradiction. Hence f is continuous (see, e.g., [2]) and monotonic. We consider two casses.

(1.) f is increasing. Fix an $x \in \mathbb{R}$. Then f^n is increasing and (by induction) $f^n(x) > x$ whenever f(x) > x and $f^n(x) < x$ whenever f(x) < x for each $n \in \mathbb{N}$. Hence f(x) = x and $f = \operatorname{id}_{\mathbb{R}}$.

(2.) f is decreasing. Fix an $x \in \mathbb{R}$ and put $x_1 = f(x)$. We shall verify that $f(x_1) = x$. Obviously it is sufficient to consider that $x_1 \neq x$, so either $x < x_1$ or $x_1 < x$.

(2.1.) Assume $x < x_1$ and suppose that $f(x_1) \neq x$, so either $f(x_1) < x$ or $f(x_1) > x$.

(2.1.1.) Suppose $f(x_1) < x$. We can prove by induction that $f^n(x) > x$ when n is odd and $f^n(x) < x$ when n is even. In fact, this is true for n = 1and n = 2. Assume that $f^{2n+1}(x) > x$ and $f^{2n+2}(x) < x$. Then $f^{2n+3}(x) >$ $f(x) = x_1 > x$. Moreover, $f^{2n+4}(x) < f(x_1) < x$, which completes the induction. Thus $f^n(x) \neq x$ for all positive integer n, a contradiction.

(2.1.2.) Let $f(x_1) > x$. We verify by induction that $x < f^n(x) < x_1$ for all n > 1, which contradicts the assumption on f.

Therefore $f(x_1) = x$ if $x < x_1$.

(2.2.) Now suppose that $x_1 < x$. Since f is decreasing, f(f(x)) > f(x). Then, by (2.1.), $f^3(x) = f(x)$. Since f is injective, $f^2(x) = x$, so $f(x_1) = x$.

References

- E. Borel, Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France 47 (1919), 97-125.
- [2] A. M. Bruckner and J. G. Ceder, *Darboux continuity*, Jber. Deut. Math. Ver. 67 (1965), 93-117.
- [3] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22 (1972), 435-448.
- [4] K. Kuratowski and W. Sierpiński, Les fonctions de classe 1 et les ensembles connexes punctiformes, Fund. Math. 3 (1922), 303-313.

ITERATIONS OF DARBOUX FUNCTIONS

- [5] T. Natkaniec, On quasi-continuous functions having Darboux property, Math. Pannonica 3 (1992), 81-96.
- [6] E. Szpilrajn-Marczewski, Sur une hypothese de M. Borel, Fund. Math. 15 (1930), 126-127.