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 AN ELEMENTARY PROOF OF THE BOREL

 ISOMORPHISM THEOREM

 In this note we present a very elementary proof of the Borei isomorphism
 theorem (Corollary 6). The traditional and more well known proof of this
 theorem uses the first separation principle for analytic sets. A proof of this
 avoiding the first separation principle is also known ([1, p. 450]). Our proof is
 perhaps the simplest.

 A Polish space is a second countable, completely metrizable topological
 space. The Borei <r-field of a metrizable space X will be denoted by B(X).
 The space {0,1}^ of sequences of O's and Ts will be denoted by C. Equipped
 with the product of discrete topologies on {0, 1}, it is a compact metrizable
 space. A bimeasurable map from a measurable space [X, *4) to a measurable
 space (Y, B) is a measurable map / : ( X , A) - > (Y, B) such that f(A) G B for
 every A e A. A Borei subset of a Polish space will be called a standard Borei
 set. It is assumed that a standard Borei set is always equipped with its Borei
 cr-field. Two standard Borei sets X and Y are called isomorphic if there is a
 bijection / : X - > Y which is bimeasurable.

 Lemma 1 ([ 1, page 348, Theorem 3]) If X is a metrizable space , then B(X)
 is the smallest class B of subsets of X such that

 i) every open set in X belongs to B ;

 ii) if Bo, B', . . . are pairwise disjoint and belong to B, then so does (Jn Bn ;
 and

 iii) if Bo, jBi, . . . belong to B, then so does fļn Bn.
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 Proof. If C = {A G B : X ' A G B}, then C satisfies conditions i) - iii).
 Hence C is closed under complementation and so equals B(X). This completes
 the proof.

 The next result can be found in ([1, page 448, Theorem 1]). However, our
 proof is significantly simpler than the one given in ([1]).

 Proposition 2 If X is a Polish space, then for every Borei set B in X there
 is a Polish space Z and a continuous bijection f : Z -¥ B. Moreover , for every
 Borei set A in Z, f(A) is Borei in B.

 Proof. Let B be the class of all Borei sets in X satisfying the above property.

 i) Let U be an open set in X. As U is Polish we take Z = U and / the
 identity map. This shows that U G B.

 Let Bo,Bi> . . . belong to B. For each n, fix a Polish space Zn and a
 continuous bijection fn : Zn -> Bn which is bimeasurable.

 ii) Set Z = {(z0,*i,...) G HnZn • fo(zo) = fi(zi) = and define
 f ' Z -¥ X by f{zQ)z', . . .) = /0(20), i/o, Zi , . . .) e Z. Then Z is Polish
 and / : Z - > X is a continuous injection such that f(Z) = p|n Bn. It is
 also clear that / is bimeasurable. Thus, p|n Bn G B.

 iii) If, moreover, -So , -Si , . • . are pairwise disjoint, then let Z be the direct
 sum of Zo, Zii . . . and / : Z - >• X be defined by f(z) = fi(z) if z G
 Zi , îGw. This shows that (Jn Bn G B. We get the result from Lemma
 1.

 The following result is a measurable analogue of the Schröder-Bernstein
 theorem and is a part of folklore. A sketch of the proof is given for the sake
 of completeness.

 Proposition 3 (Schröder-Bernstein) : If there exist injective bimeasurable
 maps f : {X,A) - ► (Y, B) and g : (y, B) - > (X.A), then there is a bimeasur-
 able bijection h : (X}A) ->• (y, B).

 Proof. Inductively we define sets Ao,Ai>... in A by Ao = 0 and An+ 1 =
 X'g(Y' f(An)). Set A = [jnAn. Then A e A and A = X ' g(Y ' f(A)).
 Now, define h : X - > Y by

 h(x' _ / /(*) if * € i4
 ' g if X € X ' A.

 Clearly h is a desired bimeasurable bijection.
 We shall need one more well known result for our proof.
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 Proposition 4 ([ 1 , p.444> Theorem]) Every uncountable Polish space Z con-
 tains a homeomorph of C.

 Theorem 5 If B is an uncountable standard Borel set, then B is isomorphic
 to C.

 Proof. Let D be the set of all dyadic rationals (including 0 and 1) in I -
 [0, 1] and E the set of all eventually constant sequences (zn) G C. Define
 /:/-)» C by f'D to be any bijection from D to E and for x G I ' Di f(x) =
 (xn) where x = xn • 2~"n_1. Note that f'(I ' D) is a homeomorphism
 from I ' D onto C ' E . Thus I is isomorphic to C. It follows that the Hilbert
 cube H = Iw is isomorphic to which is homeomorphic to C. Since B is
 homeomorphic to a Borel subset of H , it is isomorphic to a Borel subset of C.

 On the other hand, by Proposition 2, there is a Polish Z and a continuous
 bijection g : Z -ï B. Since B is uncountable, so is Z. By Proposition 4, Z
 contains a homeomorph of C and, hence, so does B.

 Our result follows from Proposition 3.

 Corollary 6 (The Borel Isomorphism Theorem): Two standard Borel sets X
 and Y are isomorphic iff they are of the same cardinality.
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