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 Abstract

 We introduce the concept of a path integral which integrates the path
 derivatives and recovers the primitives. The path integral is an extension
 of the Henstock integral. Moreover, we introduce the ^-strong Lusin
 condition. Using this new concept, we give a descriptive definition of a
 path integral and a monotone theorem of a path differentiable function.

 A.M. Bruckner, R.J. O'Malley and B.S. Thomson introduced the path
 derivatives which unified a number of generalized derivatives [l] . In this paper,
 we extend the Henstock integral to the path integral which integrates the path
 derivatives and recovers the primitives. The fundamental objects of our study
 are systems of paths on the real line.

 Definition 1 Let x G M. A path leading to x is a set Ex Cl such that x G E
 and x is a point of accumulation of Ex. A system of paths is a collection
 E = {Ex : x EM} such that each Ex is a path leading to x [ 1 , p. 98].

 Definition 2 Let F : M - y M and E = {Ex : x G M} be a system of paths. If

 iim FW-FW
 y-ix y~x
 y e Ex

 is finite then we say that F is E -differentiable at x and write F'E[x ) = f(x)
 [1, p. 98]. The E -continuity is similarly defined.

 Definition 3 A system of path E is said to be bilateral if every point x is a
 bilateral point of accumulation of E x [1, p. 100].
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 Definition 4 Let E = {Ex : x G M} be a system of paths. Then E will be
 said to satisfy the condition listed below if there is associated with E a positive
 function S on M so that whenever 0 < y - x < min(S(x)1 6(y)), the set Ex and
 Ey intersect in the state fashion :
 Ą.I. Intersection condition(I.C.): Ex fļ Ey fļ[z, y] / 0.

 Definition 5 A collection C of subintervals of a fixed interval [a, 6] is said
 to be an E -full cover of [a, 6] if there is a positive function S on [a, 6] so that
 every interval [y,z], for which y,z G EXìy < x < z and 0 < z - y < S(x),
 necessarily belongs to the collection C [ 1 , p. 109].

 Theorem 1 Let E = {Ex : x G M} be a system of paths that is bilateral and
 satisfies the intersection condition. Then ifC is an E-full cover of the interval
 [a, 6], C must contain a partition of every subinterval o/[a,6] [ 1 , p. 109].

 We first give a Riemann- type definition of a path integral.

 Definition 6 A real-valued function f is said to be E-path integrable to A on
 [a, 6] if for every e > 0 there is an E-full cover C on [a, 6] such that for any
 partition D = {[ií, v], x} of [a, 6] from C , we have

 '(D)J2f(x)(v~u)-A<e-

 We denote the integral A by ( EP ) f = A.

 Remark The E- path integral includes the approximately Perron integral [4,
 p. 138] and S-Henstock integral [3, p. 156]. Clearly, the E- path integral can
 also recover the preponderant derivative [1, p. 102, Th3.5].

 Here are several obvious facts.

 Facti Let / and g be functions mapping [a, 6] into M and let a and ß be real
 numbers. If / and g are jE-path integrable on [a, 6], then af + ßg is
 E- path integrable on [a, 6] and

 (EP) [ b(af + ßg) = a(EP ) f f + ß(EP) fg. Ja Ja Ja

 Fact2 If f(x) = 0 almost everywhere in [a, 6], then / is E- path integrabole
 to 0 in [a, 6].

 Fact 3 If / and g are i£-path integrable on [a, 6] and if f < g for almsot all x
 in [a, 6], then

 (EP) Ja f f<(EP) Ja f g. Ja Ja
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 Fact4 (Henstock's lemma) If / is i?-path intergrable on [a, 6] with F(x) =
 (EP) J * f, then given £ > 0 there is an #-full cover such that for any
 partition D from C, we have

 l(^) ]£ /(£)(« -«)- ¿I < ®

 Then for any partial partition D' = { , v,-], &}?=1 from C, we have

 ¿|/K)(t;i-«i)-(F(t;i)-F(«0)l<2£.
 » = 1

 Theorem 2 If f is E-path integrable on [a, 6], then the function F(x) =
 (EP) f* f is E - continuous on [a, 6].

 Proof. Let x G [a, b] and let e > 0. Choose an i£-full cover C on [a, 6] and

 let rj = minļi(z), 2(i+Ì/(a?)l)}' ^ 't - x' < *)- Since x G [t, x] or
 [xjt] and [; t , x], [x,ť] G C, we can use Henstock's lemma to obtain

 'F(t) - F(X) I < I F(t) - F(x) - f(x)(t - x)' + I f(x)(t -x)'<e.

 Therefore, the function F is ^-continuous at x.

 Theorem 3 If F is E-path integrable on [a, b], then the function F(x) = f* f
 is E-differentiable almost everywhere on [a, 6] and F'E(x) = f(x) almost every
 where on [a, 6].

 Proof. Let X be the set of points x at which either Fe{x) dose not exist
 or, if it does, is not equal to f{x). We shall prove that X is of measure zero.

 Given € > 0, since / is i£-path integrable on [a, 6]. There is an i£-full cover
 C such that for any partition D = {[u, v],£} of [a, 6] from C, we have

 (1) '(D)^m(v-u)-(EP) f f'<e. Ja

 By the Henstock's lemma, we obtain

 (2) {D') £ |/(0(® - ti) - (F(v) - F(u)' < 2e.
 where D' = { [i/, v],£} is a partial partition from C.

 Let ¿(x) be the positive function in the definition of the E'-full cover C.
 From the definition of X we see that every x G X there is a r](x) > 0 such
 that for <J(x) > 0 either there is a point u with 0 < x - u < S(x ), u G Ex and

 (3) 'F{x) - F(u) - f{x)(x - u)| > T)(x)'x - u'
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 or there is a point v with o < v - x < 6(x), v G Ex and

 (4) |F(v) - F(x) - f{x)(v - x)' > T](x)'v - x'.

 Fix n and let Xn denote the subset of X for which rj(x) > K Then the
 above family of chosen intervals [tí, x] and [x, v] covers Xn in the Vitali sense.
 Applying the Vitali covering theorem, for e > 0 we can find [uf^Vk] for k =
 1, 2, • • • , m with Uk = Xk or Vk = Xk such that

 m

 m*Xn < - Ufc| +e.
 k=i

 Using (3), (4), we have

 m

 m* Xn < |F(u/t) - F(uk) - f(xk)(vk - uk) + e.
 k= 1

 Note that Vk] G C, for k = 1,2 , • • • , m, and (2), we get

 m* Xn < (2 n -j- 1)£.

 Since e is arbitrary, the outer measure of Xn is 0 and so is X.

 Definition 7 A function F is said to satisfy the E -Strong Lusin condition,
 ESL , if for every set H C [a, b] of measure zero and for every € > 0 there exists
 an E-full cover C such that for any partial partition D = {[tí, ü],£} from C,
 we have

 (D)£|F(w)-F(ti)|<e
 where £ G H.

 Remark ü?-strong Lusin condition originally comes from Lusin's (N) condition
 [7, p. 224], Lee's strong Lusin condition [5, p. 757] and Liao-Chew's approxi-
 mately strong Lusin condition [6].

 Now we prove the main result.

 Theorem 4 A function f is E-path integrable on [a, 6] if and only if ther
 exists an ESL function on [a, 6] such that F'k = / almost everywhere on [a, 6].

 Proof. Suppose first that / is jE'-path integrable on [a, 6] and let F(x) =
 (EP)/:f. Then F is ^-continuous on [a, 6] by Theorem 2 and F'E = /
 almost everywhere by Theorem 3. Let H be a set of measure zero and let
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 e > 0. Then there is an i?-full cover C shch that for any partition D of [a, 6]
 from C. We have

 '{D)Y,m{v-u)-{EP) ļ f'<£~.
 By the fact 2, we may suppose that f(x) = 0 whenever x G H. By the
 Henstock's lemma, we have

 (D) £ |F(«) - F(u)' < ( D ) £ |F(t>) - F(u) - f(Q(v - 1»)| +

 (D)Y,'m(v-v)<e
 where D is a partial partition from C.

 Now suppose that there exists an ESL function F on [a, 6] such that F'E - f
 almost everywhere on [a, 6]. Let H = {£ G [a,6];F¿ ^ /(£)} an<^ £ > 0.
 For each £ G [a, b]'H choose Si so that |/(£)(v ~~ u) ~~ {E{v) ~ < £'v ~ wl
 whenever u,v G Eç and 'u - v' < ¿i(£). Since F satisfies the ESL conditoin,
 there is an i?-full cover C' such that for any partial partition D = {[u,v],£}
 from C', we have

 (I>)£|F(t,)-F(«)|<e
 where £ G H. Let 82 be the positive function in the definition of E-îull cover
 C'. Define

 min(Si(x),S2{x)), xe[a,b}'H,
 dW~'i2(*), xeH.

 Let C be the üJ-full cover which is defined by the positive function S.
 Suppose that D = {[tí, v],£} is the partition of [a, 6] from C, we have

 |£/(0(«-«)-(F(6)-F(a))| =
 'Y,m)(v-u)-F(v)-F(u))'<
 E m(v-u)-(F(v)-F(u))' +

 íe[o,6]'/f

 £!/«)(» -«01 + £!*•(«)- *■(«)!<
 četf i€H

 [1 + (6 - o)]c

 where we suppose that /(£) = 0 whenever f G H.
 Following Theorem 5 is a corollary of Theorem 4 and Fact 3, but a direct

 proof is possible using Theorem 1 .
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 Theorem 5 Let F be an ESL function. If F'E > 0 almost everywhere on
 [a, 6], then F is nondecreasing on [a, 6].

 Proof. Let H - {£ G [a, 6] : Fß(£) > 0} and let e > 0. For every £ G [a, 6]'#,
 choose ¿i(£) such that

 l**(0(® - «) - (F{v) - F(u))' < e'v - u|

 whenever u,v G Eç and 'v - u' < Since F satiafies the ESL condition,
 there is an E'-full cover C' such that for any partial partition D = {[u,v],f}
 from C' j we have

 (D)¿2'F(v)-F(u)'<e
 where f G H. Let ¿2(0 be the positive function in the definition of i^-full
 cover C', Define

 x(„' - f rnin(S1(x),S2(x)), x G [a,6]'tf,
 i2(z), xeH.

 Let C be the E'-full cover which is defined by the positive functoin ¿(f).
 By the theorem 1, there is a partition D = {[u,v],f} from C. Labelling the
 D by D = { [ai , ai+iL&J-Ļi » we have

 F(b) - F(a) = ¿(F(ai+1) - F(a,)) = Ei +E2
 1 = 1

 where (S2) denote the partial sum of for which the associated point
 & £ MM (6 G H). Therefore, we have

 F(b) - F(a) > -e(b - a + 1).

 Since e is arbitrary, we have F(b) > F (a). For any subinterval [a, ß] of [a, 6],
 same argument given that

 F(ß) > F(a).

 This shows that F is monotone nondecreasing on [a, 6].

 Remark It is interesting to compare this monotone theorem with other ones
 given in [1, p. 123 Cor. 8. 5 and Cor. 8. 6].

 Corollary 1 Let F be an ESL function . If F'e(x) = 0 almost everywhere on
 [a, 6]. Then F is constant.

 Finally, we may use theorem 12 as an alternative definition of the i£-path
 integral.
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 Definition 8 A real-valued function f on [a, 6] is said to be path integrable if
 there exists an EPI function F such that F'E = / almost everywhere on [a, 6].
 The function F is then called indefinite E-path integral of f on [a, 6]. The
 increment F (I) = F (b) - F (a) is termed definite E-path integral over [a, 6]
 and is denoted by

 (EP) f f = F(b) - F(a). Ja

 Remark This gives another way which shows that E- path integral includes
 the S-Henstock integral [2].

 The author wishes to thank the referee for his useful suggestions.
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