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 THE SHORTEST ENCLOSURE OF THREE

 CONNECTED AREAS IN R2

 Abstract

 We show that the "standard triple bubble" is the shortest way to en-
 close and separate three areas in R2, assuming that the enclosed regions
 and the exterior region are connected.

 1 Introduction

 In nature, soap bubbles tend to enclose fixed volumes of air using the least
 possible surface area. The analogous problem in 2 dimensions is to find the
 shortest way to enclose and separate areas A', . . . , Am in the plane. If m = 1,
 the solution is a circle. Joel Foisy, Manuel Alfaro, Jeffrey Brock, Nickelous
 Hodges, and Jason Zimba [F2] have proved that for m = 2, the unique solution
 is the "standard double bubble" shown in Figure 1.

 In general, a troublesome possibility is that the regions enclosed may be
 disconnected, as shown in Figure 2(a). The exterior region might also be
 disconnected. We do not believe that either of these situations occurs, but we
 do not know how to prove this for m > 2.

 In this paper, we seek the shortest enclosure of three areas, assuming that
 all regions are connected. It was proved only recently that a solution to this
 problem exists [Ml]. When we insist that the regions be connected, we have
 to allow for the possibility that the curves that separate the regions may bump
 up against each other and change curvature, so that regions may be connected
 only by "infinitesimal strips" , as shown in Figure 2(b). The precise statement
 of this existence and regularity theorem is given in §2.
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 Figure 1: The standard double bubble in M 2 is uniquely length-minimizing.

 I ^2 J ^2
 U'

 (a) (b)

 Figure 2: (a) In general, regions may be disconnected, (b) In the connected
 regions problem the regions may be connected only by "infinitesimal strips" .
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 Figure 3: We first show that any length-minimizing enclosure of three con-
 nected areas has one of these three combinatorial types.

 In §3, we show that there are only three combinatorial types that a solution
 to this problem can have. These are shown in Figure 3. Our main result is
 the following:

 Main Theorem. Given Ai,A2, A3 > 0, the shortest way to enclose and
 separate areas Ai, ^2,^3 in M 2 is a bubble of type (a) with no bumping.

 That there is a unique such triple bubble was proved by J. Foisy [Fl, Thm.
 4.6] for equal areas and by A. Montesinos Amilibia [M] in general.

 To prove the Main Theorem we will find the shortest bubbles of types (b)
 and (c) and show that they are inferior to type (a). The main difficulty is that
 curves may change curvature where they bump. To get by this complication,
 we consider in §7 a different problem in which the regions are allowed to
 overlap. When the curves are allowed to move about freely in this way, they
 revert to circular arcs, as shown in Figure 4. It is then relatively easy to
 determine the length-minimizing "overlapping bubbles" of types (b) and (c),
 and we find in §8 that they do not have any overlapping regions. Hence we
 have found the shortest bubbles of types (b) and (c) for the original problem,
 and their curves do not change curvature. A simple argument (Theorem 8.5)
 then shows that these are inferior to type (a).

 To complete the proof of the Main Theorem, we need to show that there
 is no bumping in length-minimizing bubbles of type (a). This would follow
 if we could prove that regions in a length-minimizing overlapping bubble of
 type (a) do not overlap. However, this seems to be harder than for types (b)
 and (c). Instead we give a direct but more complicated argument in §"4-§6,
 using curvature considerations ("pressure"), to rule out bumping. In §4, we
 also present a nice formula relating area, length, and pressure for bubbles in
 equilibrium.
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 Figure 4: When we allow regions to overlap, bumped-up curves revert to
 constant-curvature arcs.
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 2 Existence and Regularity

 We define a bubble to be a finite collection of immersed C1 curves 7,- : [0, 1] - >•
 M2, called edges , which may overlap ("bump") but not cross. A common
 endpoint of one or more edges is called a vertex. We assume that the degree
 of each vertex is at least three. To handle the case of single bubbles, we also
 allow "edges" to be smooth maps S 1 - y M2, with no vertices. If two edges
 bump along a maximal segment (possibly of length zero) , we call the endpoints
 of this segment merges. Note that edges make 0° angles at merges, in order
 to remain C1.

 The length of a bubble B> which we denote by t(B), is the sum of the
 lengths of the edges of B. Length counts with multiplicity where edges bump.

 Given a bubble B with edges {7* } , we say that two points p, q G M2 - (J 7 ,•
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 are in the same region if and only if there is a path <^> : [0, 1] - >- M2, which may
 overlap, but not cross, the 7¿'s, with <p(0) = p and <p( 1) = q. We refer to the
 unbounded region as the exterior.
 The following theorem of Morgan provides the existence and regularity of

 length-minimizing bubbles with connected regions.

 Theorem 2.1 ([Ml]) Given prescribed areas A', . . . , Am, there exists a
 length-minimizing bubble B enclosing exactly m bounded regions of areas
 Ai, ... , Am. Any such B has the following properties:

 (1) The edges of B have constant curvature , except that they may change
 curvature at merges.

 (2) Every vertex of B has degree 3, and incident edges meet at 120° angles.

 3 Combinatorial Types

 We say that two bubbles have the same combinatorial type if each can be
 continuously deformed into the other, without allowing edges to cross or shrink
 to points (but allowing bumping edges to be separated) . If we deform a bubble
 Bi without ever allowing edges to cross, in such a way that the lengths of some
 of the edges shrink to zero (but no regions disappear) , and if we then fuse the
 endpoints of zero-length edges into single vertices, we call the type of the
 resulting bubble a degeneracy of the type of B.

 An analogue of Theorem 2.1 in [Ml] states that for any combinatorial type
 and areas, there is a length-minimizing bubble enclosing the given areas with
 the given combinatorial type, or a degeneracy thereof. However, we will not
 need this result.

 3.1 Allowable Types

 A combinatorial type represented by bubble B is allowable if B has the fol-
 lowing properties:

 (1) Every vertex of B has degree three.

 (2) Every edge of B is part of the boundaries of two distinct regions; that is,
 B has no cut edges.

 (3) The edges and vertices of B form a connected graph.

 Lemma 3.1 The combinatorial type of any solution to the connected regions
 problem, as given by Theorem 2.1 , must be allowable.
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 Figure 5: It is sometimes possible to place lower bounds on the length of a
 bubble by decomposing it into simpler pieces. The bubble on the left may be
 decomposed into a standard double bubble and a single bubble.

 Proof. Let B be a length-minimizing enclosure of areas with
 connected regions. By Theorem 2.1(2), every vertex of B has degree three. If
 B had a cut edge, then we could delete this edge to obtain a shorter bubble
 enclosing the same areas, so B would not be length-minimizing.

 Suppose B is disconnected. Let B' be a connected subset of B} and let
 Bi = B - B'. We can translate B' (possibly through distance zero) until some
 edges of B' bump against some edges of i?2, without crossing. At one of the
 points of contact, we can add a vertex, without disconnecting any regions, to
 obtain a new bubble B' . The new vertex has degree at least four, so B' is not
 length-minimizing. However, B' has the same length and encloses the same,
 areas as B, so B is not length-minimizing. □

 We easily deduce:

 Corollary 3.2 Any length-minimizing enclosure of three connected areas must
 have one of the three combinatorial types shown in Figure 3.

 3.2 Decomposition

 It is sometimes possible to place lower bounds on the length of a bubble by
 decomposing it into simpler pieces, as illustrated in Figure 5.

 The most basic example of this technique is the following:

 Lemma 3.3 If A and B are length-minimizing bubbles for their combinato-
 rial types and the areas they enclose, then A U B is length-minimizing for its
 combinatorial type and the areas it encloses. Furthermore, if A and B are
 uniquely length-minimizing, then any length-minimizing bubble with the same
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 combinatorial type and enclosed areas as A U B is the union of a copy of A
 and a copy of B.

 Proof. Let C be any bubble with the same combinatorial type as A U 5,
 enclosing the same areas. C is the union of bubbles A! and B' which have the
 same combinatorial type and enclosed areas as A and B , respectively. Since
 £{A') > £{A) and £{Bf) > £( B ), £(C) > £(AUB ), so AUB is length-minimizing.
 The uniqueness part is proved similarly. □

 Example 3.4 A bubble consisting of two intersecting circles is uniquely length-
 minimizing for its combinatorial type and the areas it encloses. (We will need
 this fact in §7.)

 4 Pressure and Equilibrium

 In this section we discuss the notion of pressure, which gives us useful infor-
 mation on the curvatures of edges. This allows us to rule out bumping in
 length-minimizing bubbles of type (a). (See §5 and §6.) In fact, pressure con-
 siderations apply not just to length-minimizing bubbles, but to any bubbles
 in equilibrium.

 4.1 Equilibrium

 We define a variation of a bubble B to be a C 1 family of bubbles {Bt | t G
 (-a, a)} of the same type as 5, with Bo = B. More precisely, there must be
 C 1 functions 71, . . . , 7 n ' [0, 1] x(- a, a) - ► M 2 such that for each ť, the edges
 of Bt are 71 (-,ź), . . .,7n(-,ť). Also, vertices are preserved, i.e., if G {0, 1}
 and 7,- (s,- , 0) = 7 j (sj , 0) , then 7 ,• (s,- , t) = 7 j (sj , t) for all t. (There are separate
 provisions for the occasional circular edges.)

 We sometimes need to consider perturbations of a bubble that can only go
 in one direction; for example, we may wish to pull bumped up edges away from
 each other. Thus we define a half- variation of a bubble B to be the same as
 a variation, except that we consider instead a family of bubbles parametrized
 by t G [0, a).

 A bubble B is in equilibrium if for every half- variation {Bt} of B in which
 Bt encloses the same areas as B for each ť, we have

 ¿m) >0
 dt t- 0 -

 This implies that for every variation {Bt} of B in which Bt encloses the same
 areas as B for each t}

 dm) =0-
 dt t= 0
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 A A

 K > 0 K<0

 Figure 6: Sign conventions for the oriented curvature of an edge crossed by a
 path.

 For example, the length-minimizing bubbles given by Theorem 2.1 are in equi-
 librium.

 Lemma 4.1 If a bubble B is in equilibrium , then:

 (1) The edges of B have constant curvature , except that they may change
 curvature at merges.

 (2) At each vertex , the sum of the unit tangent vectors of the incident edges
 is zero. (In particular, the edges incident to a degree three vertex meet
 at 120° angles.)

 (3) For every closed path that only crosses edges transversely and never
 crosses merges , the sum of the oriented curvatures of the edges crossed
 is zero.

 (We use the sign conventions for oriented curvature shown in Figure 6.)
 Proof. One can prove (1) and (2) with standard variational arguments, as
 in [Ml, Thm. 3.2]. To prove (3), suppose a path <p goes through regions
 Rq ) Ri ) • • • ? Rn - Ro and crosses edges ei,...,en with oriented curvatures
 «i ,...,/cn at points pi,...,pn, in that order. For |ť| small, let Bt be the
 bubble obtained by adjusting each e¿ near pi so that area t is transferred from
 Ri to Äj+ 1. (If the path crosses an edge whose curvature is not constant,
 we only adjust a constant-curvature segment of the edge. If the path crosses
 several bumping edges, then we adjust all the bumped edges the same way,
 along some constant-curvature segment containing no merges.)

 We have

 dt(Bt) _
 dt t=o '

 » = 1

 (See, for instance, [M2, p. 6].) Since B is in equilibrium, = 0. □
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 4.2 Pressure

 Proposition 4.2 Let B be a bubble in equilibrium enclosing areas A' , . . . , Am.
 Then there exist constants pi, . . .,pm such that for any variation {Bt} of B,

 d£(Bt) = A dAjjt)
 dt t- o dt t= o

 »=i

 where Ai(t) denotes the area of the 2th bounded region of Bt.

 Proof. For each ¿, choose a variation with initial velocity vector field Vi
 which changes the area of the 2th region at a unit rate while leaving the areas
 of the other regions fixed. Let p¿ be the initial change in perimeter resulting
 from this variation.

 Let {Bt} be an arbitrary variation with initial velocity vector field v, and
 let Ci = dAi/dt't=o- Let {B't} be a variation with initial velocity vector field
 v - J^CiVi, so that { B[ } encloses the same areas as B for each t. By the
 definition of equilibrium,

 „=«) at =«m dt -£cm. ' at t= o dt t= o '
 i=i

 We call the constant p,- the pressure of the the zth region. Given two regions
 Ri and ñj, the difference in pressures, p, - pj, represents the initial rate of
 change of length of the bubble as area is transferred between the two regions
 at a unit rate. We define the pressure of the exterior to be zero. We denote
 the pressure of a region R by pr (R).

 To find pr (ñ), draw a path that begins in the exterior, ends in ñ, only
 crosses edges transversely, and never crosses a merge. By an argument similar
 to the proof of Lemma 4.1(3), we find that pr (R) is the sum of the oriented
 curvatures of the edges crossed by this path. For example, the curvature of an
 edge that does not bump against any other edges is equal to the difference be-
 tween the pressures of the two regions it separates. (The edge bulges outward
 from the region with higher pressure.) Where n edges bump along a curve,
 the curvature of the common arc is equal to 1 /n times the pressure difference
 between the two outermost regions that the n edges separate.

 We have the following nice relation between area, length, and pressure for
 bubbles in equilibrium. (This will not be needed for the Main Theorem).

 Proposition 4.3 Let B be a bubble in equilibrium whose bounded regions have
 areas Ai and pressures pl. Then

 =!>*<•
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 Proof. Fix q E M2, and for |ť| < 1, let Bt be the bubble obtained by
 scaling B about center q with ratio (1 + t). Then £{Bt) = (1 + t)£(B ), and
 Ai(t) = (1 + t)2Ai. Now apply Proposition 4.2. □

 Remark 4.4 The previous two results generalize easily to bubbles comprised
 of hy persurf aces in Mn. To find the pressure of a region of such a bubble, take
 the description of pressure for bubbles in M 2 and replace "curvature" with
 "mean curvature". In Mn, the factor of 1/2 in Proposition 4.3 is replaced by
 (n - 1 )/n.

 5 Bumping Lemmas

 In this section we prove two lemmas which we use in the next section to show
 that edges in equilibrium bubbles of type (a) do not bump.

 Lemma 5.1 Let B be a bubble in equilibrium. Suppose edges e' , . . . , en of B
 bump at p, and let Rq, . . . , Rn be the regions they separate , in that order. (The
 " order 11 of bumping edges makes sense if we view B as a limit of bubbles in
 which edges do not bump.) Then for 0 < i < n,

 pr{Ri) < -^-pr(Ro) + ^ pr[Rn ).

 Proof. Let «,• be the curvature of e¿ at p, oriented in the direction of in-
 creasing indices. (If the curvature of e¿ is not defined at p, we can carry out
 the subsequent argument near p.) Let

 i

 gi = pr(ño) + ^2kJ-
 j = 1

 Clearly K' < «2 < . . . < «n> and since qn = pr(i?n), it follows that

 fi

 qi <
 n n

 Given 0 < i < n, let (p be a path whose endpoints lie in R{ and Ro.
 Consider a half-variation of B in which Bt is obtained by first pulling edges
 e' , . . . , e,- away from e,+i , . . . , en so as to transfer area t from Ro to Ri, and
 then transferring area t from Ri to Ro along as in the proof of Lemma 4. 1(3).
 Since B is in equilibrium,

 0 - = ^Kj + pr(ño) ~ pf(iî»') =ii- p r(^»)'
 j= 1

 so pr (Ri) < qi. □
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 Remark 5.2 It turns out that conditions (1) through (3) of Lemma4.1, along
 with the conclusion of Lemma 5.1, are sufficient conditions for equilibrium.
 (Assume these four conditions hold. By 4.1(3), it makes sense to define the
 pressure of a region as the sum of the oriented curvatures of the edges crossed
 by a path starting in the exterior and ending in the region. By a calculation
 using Stokes' theorem, in which vertex terms cancel by 4.1(2), one can show
 that for any half- variation {5t},

 d£(Bt) ^ dAi
 dt t=o ~ di t=o

 which implies equilibrium.)

 Lemma 5.3 Let B be a bubble in equilibrium whose vertices all have degree
 three. Let 7 be a closed curve composed of edges in B ; we suppose that 7
 does not cross but may bump itself. Let U and V be the two regions into
 which 7 divides M2 - 7, in the sense of §2. Suppose that the pressure of every
 region of B in U is greater than or equal to the pressure of every region in V.
 Suppose also that 7 has no more than three 60° exterior angles (where V is
 the "interior"). Then 7 does not bump itself.

 Proof. Suppose 7 bumps itself. We claim that there is a segment 7' of
 7 that starts and ends at a merge p and bounds a region V' C V. This is
 evidently true when there are two points of 7 that merge with V between
 them. (See Figure 7.) But there must be two such points, because if not,
 then there are two points of 7 which merge with U between them, but do not
 merge with anything else; however, near this merge, one of the two portions
 of 7 containing the two points must bulge outward from V, contradicting our
 pressure assumptions.

 So Y and V' exist. Now assign an orientation to 7'. Observe that wherever
 segments of 7' bump, they alternate orientation.

 Let K denote the curvature of 7' (oriented inward towards V), and let
 0i , . . . , 0n be the exterior angles of 7' (where V' is the "interior" ) at vertices
 of B. Since the two ends of 7' are tangent with opposite orientations, they
 create an exterior angle of 7r, and thus

 We claim that f , k < 0. If an even number of segments of 7' bump,
 then their curvatures cancel in the integral, since their orientations alternate.
 Suppose that 2k + 1 segments of 7' bump (possibly with other segments from
 7 - 7'). Let R and S be the two outermost regions separated by the bumping
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 Figure 7: The two possibilities when two points of 7 merge with V between
 them.

 edges. One of these regions, say R , is a subset of V7, while the other is not.
 If S C U , then pr(iî) < pr(5), and Ar + 1 of the segments of 7' will have «
 zero or negative, so the curvature integral over the 2 Ar + 1 segments will be
 zero or negative. If 5 C V - V' y then some region in U is squeezed between
 the bumping edges. By Lemma 5.1, pr(ñ) = pr(S), so all 2 Ar + 1 segments
 have curvature zero. (Note that when Ar = 0 the segment ha s non-positive
 curvature, by our pressure hypotheses.)

 This proves that f , k < 0, and hence > 7 r. It follows that 7' must
 have at least three 60° exterior angles. We claim that there must in fact be
 at least four such angles. Suppose there are only three. Then £^0,- = 7r,
 so f , K = 0. Near one of its endpoints, 7' must bulge outward from V' .
 This outward bulging segment must be one of an even number of bumping
 segments of 7', since otherwise k < 0. But these segments squeeze a region
 in U between regions in V, so the segments are straight by Lemma 5.1, as
 before. This is a contradiction. □

 Remark 5.4 Similar arguments show that if a bubble encloses four or fewer
 regions, then each of the enclosed regions has positive pressure. In particular,
 this implies that the smallest length required to enclose four or fewer prese-
 cribed connected areas is a strictly increasing function of the areas. We do
 not know if this is true for the more general problem in which regions are
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 allowed to be disconnected (except for one or two areas), but if it is true, then
 it follows that the exterior of a length-minimizing bubble is connected.

 6 Bubbles of Type (a)

 Proposition 6.1 Edges do not bump in equlibrium (e.g. length-minimizing)
 bubbles of type (a).

 Proof. Let B be an equilibrium bubble of type (a). Let R'i . . . , Rą be the
 regions determined by B' assume that pr(Ri) > pr(#2) > Pr(#3) > pr(Ä4)-
 Let e,j denote the edge separating Ri and Rj ' let Vijk be the vertex at which
 Ri, Rj , and Rk meet.

 By Lemma 5.3, the curves d(R'), d(R' + Ä2) 5 and d(R' + R2 + R3) do
 not bump themselves. It follows that no edge bumps itself, and the only pairs
 of edges that can possibly bump are (ei2,e23), (^12^24), (ei3,e34), (e23,e34),
 and (ei2,e34). It is enough to show that the first four of these pairs cannot
 bump, since e'2 and 634 can bump only if e23 bumps e'2 and 634.

 Suppose ei2 and e24 bump. Starting from ^124, let p be the first point
 on e 24 which is also on e 12. Let e'12 and e24 be the segments of ei2 and e 24,
 respectively, between V124 and p. Let e'[2 be the segment of e 12 between p and
 V123. Since e24 can only bump ei2, e24 does not bump any edges. It follows
 that e'12 bumps something; otherwise e'12 and e'24 will have constant curvature
 and hence will merge at p at a 120° angle, which is impossible. The only
 edge that e'12 can possibly bump is e23. But the curve consisting of e24, e"2,
 ei3, and ei4 separates e'12 from e23. (See Figure 8.) This is a contradiction;
 therefore e 12 and e 24 do not bump. A nearly identical argument shows that
 e 13 and 634 do not bump.

 Suppose e23 and 634 bump. Starting from ^234, let p be the first point on
 e34 which is also on e23; let q be the last such point on 634. Note that e23 never
 bulges out from #3, since the only regions that can be on the other side of e23
 from Rs are R2 and R'y which have higher or equal pressure. From this, one
 shows that the segment of 634 from V234 to p has total curvature greater than
 4tt/3, and the segment of 634 from q to Ü134 has total curvature greater than
 2tt/3. Since 634 always bulges out from R3 with curvature at least as large as
 the curvature of the segments from V234 to p and q to V134, it follows that e23
 cannot possibly bump 634 on the correct side. (See Figure 9.)

 Now the only pair of edges that can possibly bump is e'2 and e 23, but these
 cannot bump since they would have to merge at a 120° angle. □
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 Figure 8: If ei2 and e24 bump, then e'12 cannot bump e23.
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 Figure 9: e23 and 634 cannot bump.
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 7 Overlapping Bubbles

 In this section we define overlapping bubbles and we prove existence and regu-
 larity of length-minimizers. In the next section we use overlapping bubbles to
 find the length-minimizing bubbles of types (b) and (c) and show that these
 are inferior to type (a).

 7.1 Definitions

 If <p is a piece wise smooth 1-cycle in M2, we define the area enclosed by <p,
 which we denote by A{ip), to be

 M<p) = J |( xdy-ydx ).

 By Stokes' theorem, this definition agrees with the usual definition of area for
 simple closed curves, up to orientation.

 An overlapping bubble consists of an embedded graph G Cl2 and a G1
 map / : G - > M2. The type of (G, /) is the homotopy class of G . If one of the
 edges of G is mapped by / to a single point, we say that (G, /) is degenerate
 (but still of the same type, unlike the degeneracies of ordinary bubbles defined
 in §3). Number the bounded faces of G with 1, . . . , nē Let <pi be a cycle which
 consists of one copy of each of the curves in the boundary of the ith face of G,
 oriented so that the face is on the left when one goes around the curve. Then
 the area of the ith region enclosed by (G, /) is defined to be A(f+<pi). An edge
 of (G, /) is the push-forward by / of an edge in G. The length of (G, /), which
 we denote by ¿((G, /)), is the sum of the arc-lengths of its edges.

 7.2 Existence and Regularity of Length-Minimizing Overlapping
 Bubbles

 First we observe that the classical isoperimetric inequality extends to curves
 that may cross themselves. A proof of this can be found in, for instance, [O,
 pp. 1183-4]. We give below a different argument which also works in higher
 dimensions.

 Lemma 7.1 If 7 is a piecewise smooth closed curve in M2, then ¿(7) 2 >
 47tA(j), with equality if and only if 7 is a circle with the right orientation.

 Proof. We may assume A > 0. As in Figure 10, 7 can be decomposed into
 rectifiable boundaries 7 ,• of regions Ri of area Ai E M such that A = Ai ,
 Ai > 0 if i > 1, and Ai < 0 if i < 0. (See [M3, p. 98]; Ri = Mi for i > 1, and
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 Figure 10: 7 can be decomposed into boundaries of regions Ri.

 Ri = -(M2 - Mi) for i < 0.) Then

 ¿(7)2=(Z«i >Z¿(7,)2 't€Z / »GZ

 > 47T A,- > 4TTA(7),
 »>1 »>1

 with equality only if 7 is a single 7 ¿ (¿ > 1) and 7 is a circle (with the correct
 orientation). □

 Corollary 7.2 Given an oriented line segment P<§ and a real number r, the
 unique shortest curve a from Q to P such that A(P$ + a) = r is an arc of a
 circle or a line segment .

 Proof. A better competitor, combined with the rest of the circle (possibly
 crossing it), would contradict Lemma 7.1. □

 Proposition 7.3 Let G C M2 be an embedded graph with bounded faces num-
 bered 1, . . . , n, and let ... , An > 0 be given. Then there exists an over-
 lapping bubble of type G (which may be degenerate) such that the ith region
 has area Ai, which minimizes length among all such overlapping bubbles. Any
 such minimal overlapping bubble satisfies :

 (1) All the edges are arcs of circles or line segments.
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 (2) At any vertex , the sum of the unit tangent vectors of the incident edges
 is zero.

 (3) At any vertex , the sum of the oriented curvatures of the incident edges is
 zero.

 Proof. By induction on the number of faces of G, one can construct an
 overlapping bubble of type G and areas Ai,...,An, all of whose edges are
 arcs of circles or line segments. The set of all such overlapping bubbles can
 be parametrized with finitely many variables, and by a standard compactness
 argument, there is a length-minimizing overlapping bubble Bo in this set.
 We claim that Bo minimizes length among all overlapping bubbles of type G
 with areas A', . . . ,An. For suppose B is such an overlapping bubble, some
 of whose edges are not arcs of circles or line segments. By Corollary 7.2, we
 can replace each such edge with an arc of a circle or a line segment, without
 affecting the areas of the regions, to get a shorter overlapping bubble B' . Then
 £(B) > i{B') > £{B0). This proves existence and regularity condition (1).

 To prove (2), first observe that at any vertex, the unit tangent vectors
 vi , . . . , vm of the incident edges must form a length-minimizing network (in
 its combinatorial type) connecting the m points at their heads. If not, then
 there exists a constant a > 0 such that, for small r, the edges can be adjusted
 inside a ball of radius r about the vertex (possibly changing areas) with a
 length decrease of at least ar. We can restore the areas by adjusting the
 edges elsewhere; since the original area distortion was at most 7r r2, the length
 increase will be at most ßr2 for some constant ß (cf. Proposition 4.2). For
 sufficiently small r, we have ar - ßr2 > 0, contradicting minimality. Thus the
 vectors v'i . . . , vm form a length-minimizing network. If we move the center
 of the network in a direction u, then the initial change in length is ^ i>, • tx,
 but this must be zero for every vector u, so ^ v,= 0.

 The proof of (3) is essentially the same as the proof of Lemma 4.1(3).
 Suppose c*i, . . . , am are the edges entering a vertex. Let «,• denote the curva-
 ture of a,-, oriented with respect to a clockwise path around the vertex. For
 every £, define a new overlapping bubble B£ by adjusting each such that
 A(oti) is increased by e. This will enclose the same areas as i?o, since the
 area of a region adjacent to the vertex is given by an expression of the form
 ;4(a,-) - A(aj) -f A(ß). Since Bo is in equilibrium,

 0=dim' dt t= o ' □ dt t= o '

 Incidentally, this proposition also holds for negative areas, although we will
 never need to consider such cases.
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 8 Bubbles of Types (b) and (c)

 The following lemma is based on a suggestion by John Sullivan.

 Lemma 8.1 Suppose a length- minimizing overlapping bubble, as given by Pro-
 position 7. 3 i has a region with only two edges ß and 7 and two vertices P and
 Q. Suppose P and Q each have degree 3; let a' be the other edge incident to
 P, and let oli be the other edge incident to Q. Then ß and 7 lie on the same
 circle or line.

 Proof. The angles at the vertices are 2tt/3, and the sum of the oriented
 curvatures of the edges at each vertex is zero. These conditions uniquely
 determine whether or not a' and a 2 lie on the same circle or line. But there
 exists a circle (or line) through P and Q which makes the same angles with
 ß as 7 and a' and a 2 do. We need only check that this curve has the right
 curvature. A short calculation shows that a constant-curvature arc through P
 and Q that makes an angle 0 with PQ has curvature 2 sin 9/l(PQ). Thus the
 curvature is correct, since sin(0) + sin(0 + ) +sin (9 + = 0 for every 6. □

 Proposition 8.2 Let three positive areas be given . Let B be a
 length-minimizing overlapping bubble of type (b) enclosing the three areas , as
 given by Proposition 7.3. Then :

 (1) If B is nondegenerate , then its edges do not intersect except at common
 endpoints.

 (2) If all such B are degenerate , then the only length-minimizer given by
 Proposition 7.3 is a pair of intersecting circles.

 Proof. (1) Suppose B is nondegenerate. Let c*i, c*2, ß') /?2> 7i, 72 denote the
 edges of the B corresponding to the edges marked on the combinatorial type
 in Figure 11. We wish to show that no two of these edges intersect, except at
 common endpoints.

 We first show that oc' and a 2 do not intersect. Suppose they do. By
 Lemma 8.1, oc' and oli are on the same circle or line. There are three ways
 that two arcs of the same circle or line can intersect; these are cases (a),
 (b), and (c) of Figure 12. In each case, angle requirements determine the
 placement of the other four edges, up to labeling and orientation. Consider
 case (a). Without loss of generality, a' is oriented upward, as indicated in
 the figure. (Otherwise we can rotate the picture 180°.) This determines the
 labeling and orientation of all the other edges. For instance, the left inner edge
 must be /?i, not 71, because A(ß 1 -71) > 0. But now A(a 1 +71+02 + 72) < 0,
 which is a contradiction. Case (b) works similarly.
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 (Xl

 Pir TYi y24 4 ß2

 a2

 Figure 11: Lemma 8.1 shows that a' and c*2 lie on the same circle or line.
 These edge labelings are used in the proof of Proposition 8.2, where we show
 that in nondegenerate, length-minimizing, overlapping bubbles of type (b),
 edges do not overlap.

 Figure 12: Different ways in which a' and a 2 might overlap.
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 Figure 13: Edges 71 and 72 of bubble B cannot intersect because they are
 separated by the two dotted triangles.

 For case (c), we can rotate the left-hand region counterclockwise around
 the circle on which a' and #2 lie, lengthening a' and shortening a2, until
 a i overlaps itself. This process does not change the length of B or the areas
 enclosed, so the resulting overlapping bubble is still length-minimizing. But
 by Proposition 7.3(1), a' is an arc of a circle, which is a contradiction.

 It is now simple to show that no other pair of edges intersects away from
 common endpoints. Let C denote the circle on which ot' and oli lie, and let
 P be its center. (If a' and c*2 lie on a line instead of a circle, then one of the
 enclosed areas must be negative.) Let and R{ be the endpoints of /?,• and 7,-.
 Let Si be the arc of C connecting Qi to Ri that does not contain the a¿'s. The
 bubble B is shown in Figure 13. (It is temporarily conceivable that we have
 labeled the /?,-'s and 7,- 's incorrectly, but this is irrelevant to the argument.)
 Since two distinct circles or lines can intersect in at most two points, edges /?,•
 and 7 i do not intersect except at their endpoints; also a,- does not intersect
 ßj or 7 j except at common endpoints. Since ß' is outside circle C and 72 is
 inside, these two edges cannot intersect; likewise /?2 and 71 cannot intersect.
 To see that 71 and 72 do not intersect, observe that 7 ,• is contained in the
 region bounded by PQ,-,PĄ, and and the two such regions are disjoint.
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 Figure 14: The first few degeneracies of type (b).

 To see that ß' and ßi do not intersect, invert about circle C and repeat the
 proof that 71 and 72 do not intersect.

 (2) Suppose all length-mfinimizers are degenerate. If a length-minimizer
 has the type labeled (d) in Figure 14, one can show that the top vertex is on
 the same circle as the bottom edge. Hence, by rotating the two small regions
 downward along this circle and stretching the top vertex into an arc of this
 circle, we obtain a nondegenerate bubble with the same length and areas. This
 contradicts the assumption that all length-minimizers are degenerate.

 A length-minimizing overlapping bubble of the degenerate type labeled (e)
 in Figure 14 will be a pair of intersecting circles, by Lemma 3.3. (Lemma 3.3
 works also for overlapping bubbles.)

 None of the other four degenerates in Figure 14, or any degeneracies
 thereof, can be a length-minimizer. To see this, observe that each of these
 four types is the union of a standard double bubble type and a circle. It is
 immediate from Proposition 7.3 that the unique shortest overlapping bubble
 of the standard double bubble type is in fact a standard double bubble. So
 the shortest overlapping bubble of one of these four types is the union of a
 standard double bubble and a circle. But if a standard double bubble and

 a circle are joined together as in the type labeled (f) in Figure 14, one can
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 split the degree four vertex vertically into two degree three vertices to obtain
 a shorter bubble (which is still of type (b)) because the top and bottom angles
 at the degree four vertex are less than 120°. (Indeed, they are 0°.) □

 Remark 8.3 The shortest overlapping bubble of type (b) will be a pair of
 intersecting circles if the two outer areas are large and the inner area is small.

 Proposition 8.4 The conclusions of Proposition 8.2 also hold for type (c).

 Proof. This is more or less the same as the proof of Proposition 8.2, since
 types (b) and (c) are different embeddings of the same graph. □

 Theorem 8.5 If B is a length-minimizing enclosure of three positive con-
 nected areas , as given by Theorem 2.1, then B must be of type (a).

 Proof. Suppose B has type (b). By Proposition 8.2, a length-minimizing
 overlapping bubble of type (b) is always non-overlapping. Hence B is the
 shortest overlapping bubble of type (b) enclosing the given areas.

 ß2 '

 ( - -V02
 R' - /?2 I ^

 '

 Pi ( I )y, J
 /«2

 ßiV z7

 Figure 15: Bubble B' has the same length and encloses the same areas as
 bubble B of Figure 13, but is not of allowable type; hence B is not length-
 minimizing.

 By Theorem 2.1, B is nondegenerate. Let a' and a 2 be as in the proof
 of Proposition 8.2; since a' and oli lie on the same circle, we can rotate one
 of the smaller regions around this circle, lengthening c*2 and shortening c*i,
 until a i shrinks to zero. The resulting bubble B' is shown in Figure 15. B'
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 has the same length and encloses the same areas as B, and Proposition 8.2
 shows that B' is non-overlapping. But B' is not of allowable type; thus B is
 not length-minimizing.
 Type (c) is ruled out similarly, using Proposition 8.4. By Corollary 3.2, B

 must have type (a). □

 Theorems 2.1 and 8.5, along with Proposition 6.1, imply the Main Theo-
 rem. The problem of finding the shortest enclosure of three areas in M 2 with
 possibly disconnected regions remains open.
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