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 CARDINAL INVARIANTS CONCERNING

 FUNCTIONS WHOSE PRODUCT IS

 ALMOST CONTINUOUS

 Abstract

 We prove that the smallest cardinality of a family T of real functions
 for which there is no non-zero function g : R - > IR with the property that
 f • g is almost continuous (connected, Darboux function, respectively)
 for all / £ T , is equal to the cofinality of the continuum.

 We shall consider real functions defined on a real interval. No distinction

 is made between a function and its graph. The notation [/ > 0] means the
 set {x : f(x) > 0}. Likewise for [/ = 0], [/ / 0], etc. If A is a planar set, we
 denote its x-projection by dom(^4) and y-projection by rng(^4). We say that
 a set A C M is bilaterally c-dense at a point z E M if card (A fi [x, x + £)) =
 and card (A fl (x - £, x]) = 2^ for each s > 0.

 A function / is said to be Darboux if /(C) is connected whenever C is
 a connected subset of the domain of /. If each open set containing / also
 contains a continuous function with the same domain as /, then / is almost
 continuous [7]. It is well-known that if / : / - y M is almost continuous, then /
 is connected and, therefore, it possesses the Darboux property [7]. Moreover,
 if / intersects all closed subsets K of M2 with dom (K) being a non-degenerate
 interval and mg (K) = R, then / is almost continuous [2]. In this paper every
 such set is called a blocking set. The family of all almost continuous functions
 will be denoted by AC , the family of all connected functions will be denoted
 by Conn and the family of all Darboux functions by V.

 For arbitrary families To and T' of real functions let us define the following
 conditions:
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 Um [To 'T')' there exists a non-zero function g such that / • g G T' whenever
 feT o.

 U^{T0;Ti): there exists a non-zero function g G T' such that / • g G Ti
 whenever / Gíí o-

 Let m(T i) denote the least cardinal k for which there exists a family To of real
 functions such that card(^o) = « and Um(T o]T') is false. We put m(T') = 0
 if Um(Rm]Ti) holds. Similarly we define the cardinal m*(T i).

 Note that U^J1 'o',T') => Um(To'Ti) for any families To, T'. Moreover
 Um(ToļTi) = Um(To'Ti) whenever / = 1 belongs to To . Hence m*(Ti) <
 m(Ti) for every family T' and m*(Ti) = m(T') if m(T') is infinity.

 The problem to determine how big can be the cardinal m(AC) was con-
 sidered in [4]. (See also [5].) Since Um(T'AC) is false for the family T of all
 singletons, m(AC) < 2". (See [3].) Assuming that the additivity of the ideal
 of all sets of the first category is 2W (which is a consequence of Martin's Axiom
 and therefore also of the Continuum Hypothesis [6]) it is proved in [3] that
 m(AC) = 2^. This suggests the following question (cf. [4, Problem 6.2] and
 [5, Problem 1.7.2, p. 84]):

 Problem 1 Can the equality m(AC) = 2" be proved in Z FC?

 In the present note we answer this problem in the negative by showing
 that m(AC) = cf(2u;), where cf(2u;) denotes, as usually, the cofinality of the
 continuum.1

 Theorem 1 For every family T of real functions with card (J') < 2W the fol-
 lowing conditions are equivalent:

 1 U^(T;AC);

 2 U^(T;Conn);

 3 U^{T-,V);

 4 there exists a non-empty bilaterally c-dense in itself set AcM such that
 A H [/ / 0] is bilaterally c-dense in itself for each f G T.

 Proof. The implications (1) => (2) =£• (3) are obvious.
 (3) => (4) Assume that g is a non-zero Darboux function and / • g are

 Darboux for each / G T . Put A = [g ^ 0'. By the intermediate value property
 of <7, A is bilaterally c-dense in itself. Now fix / G T and x G A fl [/ / 0].

 xNote that the analogous result concerning the addition is independent of Z FC. This
 result was proved by A. Miller during the Joint US-Polish Workshop in Real Analysis, Lódź,
 Poland, July 14-19, 1994, cf. [l].
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 Then (/ • g)(x) ^ 0 and, since / g is Darboux, [/ • g ^ 0] is bilaterally c-dense
 at X. Therefore A fi [/ / 0] has the same property.
 (4) => (1) Arrange all blocking sets K with A fi dom (K) ^ 0 and all

 horizontal lines in a sequence (Ka)a< 2», and all functions / G T in a sequence
 {fa)a< 2"- Note that card(v4 C' dom(Ka)) = 2" for every a < 2^. Moreover,
 we can assume that / = 1 belongs to T. Let : 2W -> 2W x 2W be a bijection
 and <p = For every 7 < 2W choose (xliy1) in the following way. Fix
 7 < 2W. Let (p( 7) = (a,/?). We cosider two cases.

 1. If card(^4 fi dom(/fy) fi [/a / 0]) = 2W then (x7,t/7) G Kß , x7 / 0,
 x7 £ {x¿, Í < 7} and /a(x7) ^ 0.

 2. If card(A fl dom(A'/?) D [/a ^ 0]) < 2^ then (x7, y7) = (0, 0).

 Now define g : M M by

 _ Î^AM^-y) if 1 = «7. a = foil) , and 72",
 Ì 0 otherwise.

 We shall verify that (/ - g) D K ^ 0 for every / G T and each blocking set
 A.

 If dom(A") fi A = 0 then <7|dom(A) = 0, so (/ • (/)|dom(A) = 0. Since
 mg(A) = M, (/ • g) fl A ^ 0. Similarly, if dom(A') H A C [/ = 0] then
 dom (A) c [f - g = 0], so (/ • g) H A ^ 0.

 If dom(A)rii4n[/ ^ 0] ^ 0 then card(^4ndom(A')n[/ ^ 0]) = 2W and there
 exist a,ß <2" such that f = fa and A = Kß. Then [x1,y1) G (/a • <?) H A^
 for 7 = p-1(ar,/?).

 Since 1 G T , g is almost continuous. Since g meets every horizontal line,
 rng(<jf) = M and hence g ^ 0.

 Note moreover that [g / 0] C A. □

 Corollary 1 m(.4C) = m(Conn) - m(T>) = cf(2a;)

 Proof. Assume that card(^) < cf(2a'). Set

 = {x : /(x) / 0 and [/ / 0] is not bilaterally c-dense at x} .

 Note that card(A/) < 2W for all / G T . (Indeed, for every B C M the set of
 all x G B such that B is not bilaterally c-dense at x can be represented as
 the union B° U B~ U where B° denotes the set of all x G B for which
 there exist rationals p} q such that p < x < q and card((p, q) D5) < 2W; B+
 is the set of all x G B ' B° for which there exists a q such that x < q and
 (xiq)D B C B° and B~ is the set of all x E B ' B° for which there exists a p
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 such that p < X and (p, x) fi B C B°. It is easy to check that card(5°) < 2W,
 card (B~) < u and card(j B+) < u for all B C M.) Hence card(|J^^. Af) < 2W
 and the condition (4) from Theorem 1 is fulfilled by A = M ' Af • By
 that Theorem, m*(AC) > cf(2a;), so m(AC) > cf(2a').
 Now let {Aa : a < cf(2^)} be a family of subsets of M with M =

 Ua<cf(2")^a an(* carcK>la) < 2^ for each a < cf(2u;). For every a < cf(2a')
 let fa be a characteristic function of Aay i.e.,

 j 1 if x eAa,
 if xi A..

 Assume that g • fa is Darboux for every a < cf(2^). Then rng(<7 • fa) is an
 interval, so fa • g = 0 and consequently, g(x) = 0 for every x G Aa. Hence
 g = 0 and m(V) < cf(2w). Because m(AC) < m(Conn) < m(X>), we have the
 desired equalities. □

 The corollary above can be improved in the following way.

 Theorem 2 Let B C P(M) be a a-algebra containing a hereditarily measurable
 set of the size 2W and M(B) be the class of all B-measurable real functions .
 Then m(AC n M(B)) = m{Conn fl M(B)) = m(V n M(B)) = cf(2").

 Proof. Obviously, we have to prove only one equality: m(ACnM(B)) >
 cf(2w). Let X be a hereditarily B measurable set with card(X) = 2W. We can
 assume that X is bilaterally c-dense in itself. Let T be a family of functions
 of the size less than cf(2w). For each / G T let Af be defined as above. Then
 card((J f^^rAf) < 2 w and A = X ' (J j^Aj satisfies the condition (4) of
 Theorem 1, so ř7m(í7,w4C) is fulfilled by the function g such that [g ^ 0] C A.
 Hence g is ß-measurable. □

 Corollary 2 Let C denote the family of all Lebesgue measurable functions.
 Then m(AC fl C) = m(Conn H C) = m(V D C) = cf(2w).

 Corollary 3 Let K denote the family of all functions with the Baire propery .
 Then m(AC fl /C) = m(Conn fl /C) = m(V fl K) = cf(2w).
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