
 Real Analysis Exchange
 Vol. 20(1), 1994/95, pp. 250-255

 Sanja Varošanec, Department of Mathematics, University of Zagreb,
 Bijenička cesta 30, 41000 Zagreb, Croatia

 INEQUALITIES OF MINKOWSKI'S TYPE
 Abstract

 Let / : [a,ò] - y R be a nonnegative and nondecreasing function and
 let Xi : [a, 6] -> M (i = l,...,n) be nonnegative and nondecreasing
 functions with continuous first derivative. If p > 1, then

 (/° ((¿*i(í))P) /(í)dí) - ¿ (¡'WWW)*) * •
 If / is a nonincreasing function and ^¿(a) = 0 for all » = 1, . . . , n, then
 the reverse inequality is valid.

 1 Introduction

 In [1] H. Alzer gave the following theorem:

 Theorem 1 Let f : [a, 6] - > M be a nonnegative and increasing function and
 let g : [a, 6] - » M and h : [a, 6] - > M be nonnegative and increasing functions
 with continuous first derivatives . If g (a) = h(a) and g(b) = h(b), then

 (1) ^ I (yg(x)h(x)j f{x)dx^j > j g'(x)f(x)dx J h'(x)f(x)dx.
 He showed that the previous result is an extension of the inequality which
 can be found in [3, Vol. I page 83]. In fact, if we substitute in (1): a = 0,
 6=1, g(x) = x2ti+1, h(x) = x2v+1 where u> v > 0, then we have the theorem:

 Theorem 2 Let f : [0, 1] - > M be a nonnegative and increasing function. If u
 and v are nonnegative real numbers , then

 (2)
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 Also, in the above-mentioned famous book [3, Vol. II] one can find the reverse
 inequality of (2):

 Theorem 3 Let f : [0,oo) - > M be a nonnegative and decreasing function . If
 u and v are nonnegative real numbers, then

 (3)

 (I Í (' - (¡HHŤŤT) ) I
 (If the above-mentioned improper integrals exist.)

 In [1] the well-known inequality between arithmetic and geometric means is
 used for proving inequality (1), but that method can not be used for proving
 the reverse of (1).

 In this paper, we will give a generalization of (1), (2) and (3), and obtain
 the similar treatment for the inequality (1) and its reverse.

 2 Main Results

 Theorem 4 Let f : [a, 6] - > M be a nonnegative and nondecreasing function
 and let x,- : [a, 6] - > M (¿ = 1, . . . , n) be nonnegative and nondecreasing func-
 tions with continuous first derivative. If p> 1, then

 If f is a nonincreasing function and x,(a) = 0 for all i = 1, . . . , n} then the
 reverse inequality of (4) is valid.

 Proof. Suppose that / is a nondecreasing function. Using integration by
 parts and Minkowski's inequality for integrals we obtain

 (5) f(t)dt^j
 (n /(*)(£ ¿=1 *<(*))" - /(<*)(£ »=1 n *,(«))" - Jb / pa (£ i=i n *iW<W) / ' (n /(*)(£ *<(*))" - /(<*)(£ *,(«))" - Jb / pa (£ *iW<W) > ¿=1 »=1 Jb i=i /

 > ļ/(*)(£ «i W)P - /(«)(£ *<(«))' - ^ jf *?(«) df(t)^j j j .
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 Recall Bellman's inequality [2, page 118]:
 If ciij > 0 ,Wj >0, i = 1, . . . , n, j = 1 , . . . , m and if p > 1 satisfies

 w'apa - W2dpi2 - ... - w m aPim > 0 for all i = 1, . . . , n,

 then

 (6) ^¿(«>1«« - w2aPi2 - ■ ■ ■ - wmdVim)11^ <
 n n n

 ~ w2CŽ2,aií)P - ■■■- tt)m(yļa.m)P-
 1=1 »=1 1=1

 Setting in (2) :

 m = 3, wi = /(è), tt>2 = f(a), w3 = 1,

 if 6 V'"
 a«i = z«(6), a, -2 = ®,-(a), a<3 = I J x¡(t)pdf{t) I for i = 1, . . . , n,

 we get that (5) is greater than or equal to

 ¿ ^/(6)«f (6) - /(a)xf (a) - jTaftť) d/(ť) j =

 = É(jf(*i(ť)p)7(<)^ .
 If / is a nonincreasing function, then the proof is similar to the previous
 one with the only difference that instead of Bellman's inequality, Minkowski's
 inequality for the discrete case is used.D

 Corollary 1 If f,g, h are nondecreasing and nonnegative functions and if g
 and h have continuous first derivatives, then

 (7) ^ (yg{x)h{x)j f(x)dx ) * i: g'(x)f(x)dx J h'(x)f(x) dx.
 If g (a) = h(a) = 0 and if f is a nonincreasing function, then the reverse

 inequality holds.

 Proof. It is a simple consequence of Theorem 4 in the case when n = 2,
 p = 2 and xi(t) = yjg(t ), x2(t) = y/h(t).D
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 Remark 1 If / is nondecreasing, the statement in Corollary 1 is similar to
 the statement of Theorem 1, but g(a) = h(a) and </(6) = h(b) are not required.
 Also, in the corollary we give the reverse inequality.

 Remark 2 Setting in (7) : a = 0, 6=1, g(t) = t2u+1i h(t) = t2v+1 for
 a,6> -Ì and if / is nondecreasing we obtain inequality (2). And taking in
 the reverse of (7) : a ;= 0, 6 = B , g(t) = t2u+l , h(t) = t2v+1 we have

 (8)

 (i *U+V(*)d*j < *2uf(x)dxļ x2vf(x) dx,
 where / is a nonincreasing function. If the improper integrals fj° xu+vf(x ) dx ,

 J0°° x2uf(x) dx} J0°° x2vf(x) dx exist, then from (8) we obtain (3).

 The following theorem deals with derivatives of higher order.

 Theorem 5 Let p > 1 and let /, x, : [a, 6] - > 1R (i = 1, . . . , m) be nonneg-
 ative functions with continuous derivative of the n-th order which satisfy the
 conditions

 1° >0fork = 1,

 2° a:^(a) = 0 for k = 0, . . . , n - 1, i = 1, . . . , m and > 0 for
 k = 1, . . . , n - 1,

 3° (x£ (ź))^ > 0 for t € [a, 6] and i = 1, . . m,

 4 » (_i )"/(")(<) > 0 forte [a, 6],

 If

 (9) x'k'b) = Xjk'b) for all i,j e {1,2, m} and k = 0, 1, n - 1,
 then

 (10) jf ((£*<(*))") m* < ^¿^%.wp)(n)/w^ j •
 If the conditions in (9) are not satisfied , then

 (n) fa ((f>(ť))p) w)dt < A+ (è (/W))(n)/w<a) j
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 where

 n- 1 / / / m 'P' i""*"1)

 -(¿(wo)«"-*-")1")') i-
 If the inequalities in conditions '° and 4° are reversed , then reverse inequalities
 of (11) and (10) hold.

 The inequality (11) may be obtained via Minkowski's inequality as in the
 second proof of Theorem 4, after integrating by parts n times. The details
 are left to the reader. To check the validity of inequality (10) we need the
 following lemma.

 Lemma 1 If Xi (i = 1, . . . , m) satisfy the assumptions of Theorem 5 and if

 x'k'b) = Xjk'b) = Bk for i,j G {1, . . . , m} and k = 0, . . . , n - 1, then

 (((Š-"')')'") "'l... - Š «-f»"")"' I...
 Proof. Let us first consider the k-th derivative of the function y9 where y
 is an arbitrary function having a k-th derivative. We will prove by induction

 that there exist functions </>^ such that

 (yp){k) = tì](y,y',---,y{k))

 and <f>^ is homogeneous of the order p. For k = 1 we have

 (/)' = pyp~1y' = 4>ì](y,y')

 and

 <${ny,ny') = p(ny)p-1ny' = np ■ <$'y,y') .

 Suppose that the statement is valid for any j < k + 1. Then using Leibniz's
 rule we get

 (/)(fe+1) = (Píř-1 -y'){k) =p£ =
 i=0



 Inequalities of Minkowski's Type 255

 = w

 j= o

 and

 <$ii(ny, ny' ny(*+1)) = ^~1](ny, «y', • • • , ny(j))(ny)(fc-:,+1) =
 j= o

 = PX1 nP~l<l^j^1'yt J/', • • • , y(^)ny(k~3+1i =
 j= o ^

 = nP^ļfļi(ī/>y'>---.ī/(A!+1))-
 Now if y = Xi , then

 (*?(*))<*> =$'xi,xï,...,x'k)) =$](Bo,B1,...,Bk)
 t-b t=b

 and for y = we get

 / / m ' P' (*) mm m

 !>(<) =*Í'£>.£*í
 ' 'i = l J / ř=6 1 = 1 1 = 1 » = 1 ř=6

 = = mp<$]{B0,Bi, . ..,Bk).
 So,

 / / m x(*)'1/p 17
 l(Œ>W)PJ j 't=t=(m^f(Bo,...,Bk)) 17 =

 = ™(#ř'(Bb
 ł=l 1=1

 and the proof has been established.D
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