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 MULTIPLIERS FOR SOME GENERALIZED

 RIEMANN INTEGRALS IN THE REAL

 LINE

 Let M be the real line. If E C M, then 'E' and d(E) respectively denote
 the Lebesgue measure and the diameter of E'. An interval is always a compact
 nondegenerate subinterval of M. A figure on an interval A=[a,b] is, by defi-
 nition, a finite nonempty union of subintervals of A. A collection of figures is
 called nonoverlapping whenever their interiors are disjoint. All functions we
 consider are real- valued.

 Let F be a function on an interval A and let B be a figure on A with n
 connected components [ai, &i], . . . , [an, 6n]. Then we set ''B''= 2 n and F(B) =
 ]Cä=i[-^(^) "" F{ah)]' In particular F([a> 6]) = F(b) - F(a). This notation
 leads to no confusion as the notion of the image of a set under a function is
 never used this paper.

 The regularity of B with respect to a point z E M is the number

 r(B x) -

 d(B U {x})''B'' '

 If r(B,x) > e > 0, the figure B is called e- regular with respect to x.
 For each subset J of {1, 2, . . ., n) the set Ujejfczj, bj] will be called a sub-
 figure of B.
 A partition in A is a collection (possibly empty) {(Ai, xi), . . . , (Apixp)}
 where A' , . . . , Ap are nonoverlapping figures on A and x' , . . . , xp are points of
 A. If U h Ah = A , then the partition is called a partition of A.
 A gage on A is a positive function S defined on A. Let e > 0 and let S be
 a gage on A. A partition {(>U, Xh) : h = 1, . . . ,p} in A is called:
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 1) special if Ah is an interval for ft = 1, . . . ,p;

 2) tight if Xh G Ah for ft = 1, . . . ,p;

 3) e-regular if r(Ah, %h) > e for ft = 1, . . . ,p;

 4) S-fine if d(Ah U Xh) < S(xh) for ft = l,ě è èJp.

 In [BGP] the following definition was introduced.

 Definition 1 We say that a function f on A is Reintegrable on A if there is a
 real number I which satisfies the following condition: given e > 0, there exists
 a gage S such that E/Ui f(xh)'Ah ' - I' < e for each e-regular S -fine partition
 {(Ah,Xh) : ft = 1 of A. If the inequality holds only when the partition
 is also special or tight or special and tight, we say that f is, respectively , R* -
 or R1- or Reintegrable on A.

 It is clear that the R*t- integral is the usual Henstock integral (üí-integral)
 which in turn coincides with the classical Denjoy- Perron integral (see [H] or
 [G]). It is proved in [BGP] that the R*0-} R*- and ñ*-integrals are properly
 included in the H- integral.

 It is known (see [L] and [S]) that for each .//-integrable function / and for
 each function g of bounded variation, the function fg is also i/-integrable and
 the integration by parts formula holds:

 (1) (H) f fg dt = [F </]„ - (L) f F dg Ja Ja

 where F(x) = (H) f* f dt.
 In this paper we prove that any function g of bounded variation is a mul-
 tiplier also for the families of ñ*-, R*- or R* -integrable functions. For g a
 Lipschitz function this problem was considered in [BGP, Corollary 4.3 and Re-
 mark 4.4] and in the multidimensional case in [MP]. The question of whether
 our present result can be extended to the multidimensional case is open.
 We need the following lemmas.

 Lemma 1 (See [BGP, Lemma 2.12].) Let $ be a function on A which has
 a finite derivative <£ (x) at an interior point x of A. Given e > 0, there

 is a positive S such that $'(x)|J5| - $(i?)| < e'B' for each figure B with
 d(B U {a?}) < S and r(B , x) > e.

 Lemma 2 (See [BGP, Proposition 3.3].) Let f be integrable on A in one of
 the senses described in Definition 1. Given e > 0, there is a gage S in A such
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 that Y?h= i ļ/(^/i) I - fAh f dx^ < e for each S-fine partition {(Ah,Xh) : h =
 1, . . . ,p} in A which is e-regular or e-regular special or e-regular tight or e-
 regular special and tight according to whether the integral is interpreted as R*0
 or R* or R* or R*t, respectively.

 Lemma 3 Let F be a continuous function on A and suppose for a given e > 0,
 a given gage S and a given set of points {a?i, . . . , xp} the inequality

 (2) £|F(5h)|<£,
 h

 holds for each e-regular S-fine tight partition {(BhiXh)} in A. Let {(A/^x/j) :
 h = l,...,p} be a S-fine tight partition in A with the same set of points
 {zi, . . Then, if for each h = 1, . . . ,p the figure Arh is a subfigure of Ah
 which is Ae-regular with respect to Xh, we have 'F(Arh)' < 2e .

 Proof. We define a sequence of new partitions in A. Note that it might be
 that Xh does not belong to Arh but it does belong to Ah . We put for each
 n = 1,2,... and for each h = 1 , . . . , p

 5(n) f Ah if XheArhi
 h ļ Arh U [a^n' b^] otherwise

 where xh G [aļn), f>ln)] C Ahì | F^) - F(aļn)) | < and 6^n) - a^n) <
 d(ArhU{xh}). Then for each n we have xa G d(B^'j{xh}) < 2d(ArhU{xh})
 and II ||< 2 1| Arh || and so

 r(BM r(Bh 'Xh)~ Xk) - l^n)l >
 r(BM r(Bh 'Xh)~ Xk) - d(BPu{Xh})''BP''- >

 Kl . r(A'h,zk)

 Thus for n fixed {(B^'xh)} is an e-regular i-fine tight partition in A and

 we get from (2) that for all n we have J2h < £- Since F(B^) =

 F(Arh) + F([a^'b^]) or F(B^) = F(Arh ), for all n we have the estimate

 E ^ E iF(sin))i + E iF([4n). tti <e+l- n h h h n

 Letting n->oowe obtain ^2h |F(^)| < e < 2e as required. □
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 Theorem 1 Let f be integrable on A = [a, 6] in one of the senses of Definition
 1 and let g be a function of bounded variation on A. Then fg is integrable on
 A in the same sense.

 Proof. The i?*rintegral case is known as it is covered by formula (1). We are
 going to give a proof for the case of the R* -integral. The proofs for the other
 cases can be obtained in a similar manner with some modifications which are

 indicated below.

 Let F(x) = ( Rļ ) f* ~f{t)dt. As fl*-integral is included in H- integral, we
 can use the integration by parts formula (1) for interval [a,x]:

 (3) (H) [* fgdt = [Fg]*a-(L) f Fdg. Ja Ja

 Define $(x) = (H) f* fgdt, E = {x G A : $#(z) = f(x)g(x)} and N =
 [a, 6] ' E . It is clear that 'N' = 0. Without loss of generality we can suppose
 that f(x) = 0 for each x £ N and g(x) is increasing and positive on A.
 Now fix e > 0. For each x G E we can apply Lemma 1 to find ¿i(x) > 0
 such that the inequality

 (4) 'f(x)g(x)'B'-*(B)'< ģpppīj
 holds for each figure B with d(B U {x}) < ii(x) and r(B , x) > e/3('A' + 1).

 Next we are to define a gage for x G N. We apply Lemma 2 to find
 &2{x) > 0 for function / and for

 (5) £l = 16M00+1)
 instead of e, where ||^||oo stands for the sup-norm. We also choose a > 0 so
 that

 (6) |F(x) -F{y)' < 6^||g||^ +1^ if x,ye A and |x - y| < a .

 (We are using the fact that F is uniformly continuous on [a, 6].) Now we put

 (7Ì ^ ¿ix) = i lf (7Ì ^ ¿ix) = l min(¿2(x), (t) if iGiV .
 Having chosen a gage S let {(Ah, x^)} be an e- regular i-fine tight partition

 of A. Now to prove the statement of the theorem we estimate the sum

 I £a f(*h)g{*h)'Ah'-9(A)' <
 (8)

 £/1 1 f{xh)g{xh)'Ah' - ^(A/j)| < + Ylheji
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 where I is the set of all those indices h for which Xh G E and J is the set of
 all those h for which Xh G N.

 Taking into account that > e > e/Z{'A' + 1) and applying (4) to
 Ah, ft G /, we get

 w £<f ■
 h€l

 To estimate J2heJ note that f{xh) = 0 for Xh G N. Using (3) and putting
 Ah = U jlotjjßj] we compute

 h€J h£J

 = EE (*"(#)*(#) - - f'h h£J j ' Jaj /

 =£ ECC'i-'i«'))*)
 h£J j

 (10) + F(a$) (*(#) - g{otj)) - F(fc) (*,(#) - g(a$)) |

 <E E (F($)-F(°ì))g(fì)
 h£J j

 + E E W) - F&)' W) - *(«?))
 h£J j

 -Si -f S2

 where we have applied the mean value theorem to choose £j G [a^ßj]. From
 (6) and (7) we conclude that

 (U) 52-6(||<,|U+l)2|kil~-I-
 Now for each index h E J denote by A% a subfigure of Ah which is the

 union of all those connected components of Ah on which the increments of
 F are positive and by A ¿ the complementary subfigure of Ah . Now 'Ah' =
 'A^' + 'Afr I and one of these two subfigures has measure equal or greater than
 'Ah'/2. Denote this figure by Arh and the complementary subfigure by Ach.
 Since r(AhìXh) > e, it is easy to check that r(Arh,Xh) > §. Then (Ah,Xh) is
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 also £i-regular and ( Arh,Xh ) is 4či-regular (see (5)). Noting once again that
 f(xh) = 0 for ft G J we can apply Lemma 2 to get

 (12) E < £i
 hej

 and Lemma 3 to get

 (13) ^|F(^)|<2ei.
 hej

 Since F(Ah) = F(Arh) + F(Ach) , we have 'F{A%)'< |F(j4ä)I + I*WI .Then
 from (12) and (13) we get

 (14) E iF(^)i ^ E i*wi + E •
 AÇ J h£J h£j

 It also follows from the definitions of Arh and Ach that for each ft G J

 EW)-^))#D <(WJi + m)i)iiiiioo •
 3

 Therefore by (13), (14) and (5) we get

 (15) Si < 5ei Hflf ||oo< I •
 Finally summing up the inequalities (9), (11) and (15) and taking (8) and
 (10) into account we obtain the estimate '%2h f{xh)9{xh)'Ah ' - $(^4)| < £ for
 any e-regular ¿-fine tight partition of A. Thus we have proved that fg is
 R* -integrable on A and that $(A) is the Rļ -integral of fg on A.

 The cases of the R*0 -integral and the R* -integral are in fact simpler. For
 the R*0 -integral we don't need Lemma 3 to get (13) as it follows directly from
 Lemma 2 applied to {(Arh,Xh)}.

 In the case of the R * -integral we have just one member in the inner sum
 of S' in (10), and so there is no need to split the figure Ah into two subfigures
 A% and A j¡" to get the desirable estimate. □

 Note that we have also proved that for R*- or R *- or ñ*-integrable function
 / formula (1) holds if we replace H -integral by the corresponding R* -integral.
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