Real Analysis Exchange Vol. 20(1), 1994/95, pp. 212-218

Benedetto Bongiorno, Department of Mathematics, University of Palermo, Via Archirafi 34, Palermo, Italy (email bongiorno@ipamat.math.unipa.it) Valentin Skvortsov! Department of Mathematics, Moscow State University, Moscow 119899, Russia (email kashin@log.mian.su)

MULTIPLIERS FOR SOME GENERALIZED **RIEMANN INTEGRALS IN THE REAL** LINE

Let \mathbb{R} be the real line. If $E \subset \mathbb{R}$, then |E| and d(E) respectively denote the Lebesgue measure and the diameter of E. An interval is always a compact nondegenerate subinterval of \mathbb{R} . A figure on an interval A=[a, b] is, by definition, a finite nonempty union of subintervals of A. A collection of figures is called nonoverlapping whenever their interiors are disjoint. All functions we consider are real-valued.

Let F be a function on an interval A and let B be a figure on A with nconnected components $[a_1, b_1], \ldots, [a_n, b_n]$. Then we set ||B|| = 2n and F(B) = $\sum_{h=1}^{n} [F(b_h) - F(a_h)]$. In particular F([a, b]) = F(b) - F(a). This notation leads to no confusion as the notion of the image of a set under a function is never used this paper.

The regularity of B with respect to a point $x \in \mathbb{R}$ is the number

$$r(B,x) = rac{|B|}{d(B \cup \{x\}) ||B||}$$

If $r(B, x) > \varepsilon > 0$, the figure B is called ε -regular with respect to x.

For each subset J of $\{1, 2, ..., n\}$ the set $\bigcup_{j \in J} [a_j, b_j]$ will be called a subfigure of B.

A partition in A is a collection (possibly empty) $\{(A_1, x_1), \ldots, (A_p, x_p)\}$ where A_1, \ldots, A_p are nonoverlapping figures on A and x_1, \ldots, x_p are points of A. If $\bigcup_h A_h = A$, then the partition is called a partition of A.

A gage on A is a positive function δ defined on A. Let $\varepsilon > 0$ and let δ be a gage on A. A partition $\{(A_h, x_h) : h = 1, \dots, p\}$ in A is called:

Mathematical Reviews subject classification: 26A39

Received by the editors February 21, 1994 [†]This work was supported by C.N.R. of Italy.

^{*}This work was supported by M.U.R.S.T. of Italy.

MULTIPLIERS FOR SOME GENERALIZED RIEMANN INTEGRALS

- 1) special if A_h is an interval for h = 1, ..., p;
- 2) tight if $x_h \in A_h$ for $h = 1, \ldots, p$;
- 3) ε -regular if $r(A_h, x_h) > \varepsilon$ for $h = 1, \ldots, p$;
- 4) δ -fine if $d(A_h \cup x_h) < \delta(x_h)$ for $h = 1, \ldots, p$.

In **[BGP**] the following definition was introduced.

Definition 1 We say that a function f on A is R_o^* -integrable on A if there is a real number I which satisfies the following condition: given $\varepsilon > 0$, there exists a gage δ such that $|\sum_{h=1}^{p} f(x_h)|A_h| - I| < \varepsilon$ for each ε -regular δ -fine partition $\{(A_h, x_h) : h = 1, \ldots, p\}$ of A. If the inequality holds only when the partition is also special or tight or special and tight, we say that f is, respectively, R_s^* -or R_t^* - or R_{st}^* -integrable on A.

It is clear that the R_{st}^* -integral is the usual Henstock integral (*H*-integral) which in turn coincides with the classical Denjoy-Perron integral (see [**H**] or [**G**]). It is proved in [**BGP**] that the R_o^* -, R_s^* - and R_t^* -integrals are properly included in the *H*-integral.

It is known (see [L] and [S]) that for each *H*-integrable function f and for each function g of bounded variation, the function fg is also *H*-integrable and the integration by parts formula holds:

(1)
$$(H) \int_{a}^{b} fg \, dt = [Fg]_{a}^{b} - (L) \int_{a}^{b} F \, dg$$

where $F(x) = (H) \int_a^x f dt$.

In this paper we prove that any function g of bounded variation is a multiplier also for the families of R_o^* -, R_s^* - or R_t^* -integrable functions. For g a Lipschitz function this problem was considered in [**BGP**, Corollary 4.3 and Remark 4.4] and in the multidimensional case in [**MP**]. The question of whether our present result can be extended to the multidimensional case is open.

We need the following lemmas.

Lemma 1 (See [**BGP**, Lemma 2.12].) Let Φ be a function on A which has a finite derivative $\Phi'(x)$ at an interior point x of A. Given $\varepsilon > 0$, there is a positive δ such that $|\Phi'(x)|B| - \Phi(B)| < \varepsilon |B|$ for each figure B with $d(B \cup \{x\}) < \delta$ and $r(B, x) > \varepsilon$.

Lemma 2 (See [**BGP**, Proposition 3.3].) Let f be integrable on A in one of the senses described in Definition 1. Given $\varepsilon > 0$, there is a gage δ in A such

B. BONGIORNO AND V. SKVORTSOV

that $\sum_{h=1}^{p} \left| f(x_h) |A_h| - \int_{A_h} f \, dx \right| < \varepsilon$ for each δ -fine partition $\{(A_h, x_h) : h = 1, \ldots, p\}$ in A which is ε -regular or ε -regular special or ε -regular tight or ε -regular special and tight according to whether the integral is interpreted as R_o^* or R_s^* or R_t^* or R_{st}^* , respectively.

Lemma 3 Let F be a continuous function on A and suppose for a given $\varepsilon > 0$, a given gage δ and a given set of points $\{x_1, \ldots, x_p\}$ the inequality

(2)
$$\sum_{h} |F(B_{h})| < \varepsilon,$$

holds for each ε -regular δ -fine tight partition $\{(B_h, x_h)\}$ in A. Let $\{(A_h, x_h): h = 1, \ldots, p\}$ be a δ -fine tight partition in A with the same set of points $\{x_1, \ldots, x_p\}$. Then, if for each $h = 1, \ldots, p$ the figure A_h^r is a subfigure of A_h which is 4ε -regular with respect to x_h , we have $\sum_h |F(A_h^r)| < 2\varepsilon$.

PROOF. We define a sequence of new partitions in A. Note that it might be that x_h does not belong to A_h^r but it does belong to A_h . We put for each n = 1, 2, ... and for each h = 1, ..., p

$$B_h^{(n)} = \begin{cases} A_h^r & \text{if } x_h \in A_h^r, \\ A_h^r \cup [a_h^{(n)}, b_h^{(n)}] & \text{otherwise} \end{cases}$$

where $x_h \in [a_h^{(n)}, b_h^{(n)}] \subset A_h$, $|F(b_h^{(n)}) - F(a_h^{(n)})| < \frac{1}{n2^{h+1}}$ and $b_h^{(n)} - a_h^{(n)} < d(A_h^r \cup \{x_h\})$. Then for each *n* we have $x_h \in B_h^n$, $d(B_h^{(n)} \cup \{x_h\}) \le 2d(A_h^r \cup \{x_h\})$ and $||B_h^{(n)}|| \le 2||A_h^r||$ and so

$$r(B_{h}^{(n)}, x_{h}) = \frac{|B_{h}^{(n)}|}{d(B_{h}^{(n)} \cup \{x_{h}\}) ||B_{h}^{(n)}||} \ge \frac{|A_{h}^{r}|}{4d(A_{h}^{r} \cup \{x_{h}\}) ||A_{h}^{r}||} = \frac{r(A_{h}^{r}, x_{h})}{4} > \varepsilon.$$

Thus for *n* fixed $\{(B_h^{(n)}, x_h)\}$ is an ε -regular δ -fine tight partition in *A* and we get from (2) that for all *n* we have $\sum_h \left|F(B_h^{(n)})\right| < \varepsilon$. Since $F(B_h^{(n)}) = F(A_h^r) + F([a_h^{(n)}, b_h^{(n)}])$ or $F(B_h^{(n)}) = F(A_h^r)$, for all *n* we have the estimate

$$\sum_{h} |F(A_{h}^{r})| \leq \sum_{h} |F(B_{h}^{(n)})| + \sum_{h} |F([a_{h}^{(n)}, b_{h}^{(n)}])| < \varepsilon + \frac{1}{n}.$$

Letting $n \to \infty$ we obtain $\sum_h |F(A_h^r)| \le \varepsilon < 2\varepsilon$ as required.

Theorem 1 Let f be integrable on A = [a, b] in one of the senses of Definition 1 and let g be a function of bounded variation on A. Then fg is integrable on A in the same sense.

PROOF. The R_{st}^* -integral case is known as it is covered by formula (1). We are going to give a proof for the case of the R_t^* -integral. The proofs for the other cases can be obtained in a similar manner with some modifications which are indicated below.

Let $F(x) = (R_t^*) \int_a^x f(t) dt$. As R_t^* -integral is included in *H*-integral, we can use the integration by parts formula (1) for interval [a, x]:

(3)
$$(H) \int_{a}^{x} fg \, dt = [Fg]_{a}^{x} - (L) \int_{a}^{x} F \, dg$$

Define $\Phi(x) = (H) \int_a^x fg \, dt$, $E = \{x \in A : \Phi'(x) = f(x)g(x)\}$ and $N = [a,b] \setminus E$. It is clear that |N| = 0. Without loss of generality we can suppose that f(x) = 0 for each $x \in N$ and g(x) is increasing and positive on A.

Now fix $\varepsilon > 0$. For each $x \in E$ we can apply Lemma 1 to find $\delta_1(x) > 0$ such that the inequality

(4)
$$|f(x)g(x)|B| - \Phi(B)| < \frac{\varepsilon|B|}{3(|A|+1)}$$

holds for each figure B with $d(B \cup \{x\}) < \delta_1(x)$ and $r(B, x) > \varepsilon/3(|A| + 1)$.

Next we are to define a gage for $x \in N$. We apply Lemma 2 to find $\delta_2(x) > 0$ for function f and for

(5)
$$\varepsilon_1 = \frac{\varepsilon}{16(||g||_{\infty} + 1)}$$

instead of ε , where $||g||_{\infty}$ stands for the sup-norm. We also choose $\sigma > 0$ so that

(6)
$$|F(x) - F(y)| < \frac{\varepsilon}{6(||g||_{\infty} + 1)}$$
 if $x, y \in A$ and $|x - y| < \sigma$.

(We are using the fact that F is uniformly continuous on [a, b].) Now we put

(7)
$$\delta(x) = \begin{cases} \delta_1(x) & \text{if } x \in E \\ \min(\delta_2(x), \sigma) & \text{if } x \in N \end{cases}$$

Having chosen a gage δ let $\{(A_h, x_h)\}$ be an ε -regular δ -fine tight partition of A. Now to prove the statement of the theorem we estimate the sum

(8)
$$\frac{|\sum_{h} f(x_{h})g(x_{h})|A_{h}| - \Phi(A)| \leq}{\sum_{h} |f(x_{h})g(x_{h})|A_{h}| - \Phi(A_{h})| \leq \sum_{h \in I} + \sum_{h \in J}}$$

B. BONGIORNO AND V. SKVORTSOV

where I is the set of all those indices h for which $x_h \in E$ and J is the set of all those h for which $x_h \in N$.

Taking into account that $r(A_h, x_h) > \varepsilon > \varepsilon/3(|A|+1)$ and applying (4) to A_h , $h \in I$, we get

(9)
$$\sum_{h\in I} < \frac{\varepsilon}{3}$$

To estimate $\sum_{h \in J}$ note that $f(x_h) = 0$ for $x_h \in N$. Using (3) and putting $A_h = \bigcup_j [\alpha_i^h, \beta_j^h]$ we compute

$$\sum_{h \in J} = \sum_{h \in J} |\Phi(A_h)|$$

$$= \sum_{h \in J} \left| \sum_j \left(F(\beta_j^h) g(\beta_j^h) - F(\alpha_j^h) g(\alpha_j^h) - \int_{\alpha_j^h}^{\beta_j^h} F \, dg \right) \right|$$

$$= \sum_{h \in J} \left| \sum_j \left(F(\beta_j^h) - F(\alpha_j^h) \right) g(\beta_j^h) + F(\alpha_j^h) \left(g(\beta_j^h) - g(\alpha_j^h) \right) - F(\xi_j) \left(g(\beta_j^h) - g(\alpha_j^h) \right) \right|$$

$$\leq \sum_{h \in J} \left| \sum_j \left(F(\beta_j^h) - F(\alpha_j^h) \right) g(\beta_j^h) \right|$$

$$+ \sum_{h \in J} \sum_j \left| F(\alpha_j^h) - F(\xi_j) \right| \left(g(\beta_j^h) - g(\alpha_j^h) \right)$$

$$= S_1 + S_2$$

where we have applied the mean value theorem to choose $\xi_j \in [\alpha_j^h, \beta_j^h]$. From (6) and (7) we conclude that

(11)
$$S_2 \leq \frac{\varepsilon}{6(\|g\|_{\infty}+1)} 2 \|g\|_{\infty} \leq \frac{\varepsilon}{3}.$$

Now for each index $h \in J$ denote by A_h^+ a subfigure of A_h which is the union of all those connected components of A_h on which the increments of F are positive and by A_h^- the complementary subfigure of A_h . Now $|A_h| = |A_h^+| + |A_h^-|$ and one of these two subfigures has measure equal or greater than $|A_h|/2$. Denote this figure by A_h^r and the complementary subfigure by A_h^c . Since $r(A_h, x_h) > \varepsilon$, it is easy to check that $r(A_h^c, x_h) > \frac{\varepsilon}{2}$. Then (A_h, x_h) is

also ε_1 -regular and (A_h^r, x_h) is $4\varepsilon_1$ -regular (see (5)). Noting once again that $f(x_h) = 0$ for $h \in J$ we can apply Lemma 2 to get

(12)
$$\sum_{h\in J} |F(A_h)| < \varepsilon_1$$

and Lemma 3 to get

(13)
$$\sum_{h\in J} |F(A_h^r)| < 2\varepsilon_1$$

Since $F(A_h) = F(A_h^r) + F(A_h^c)$, we have $|F(A_h^c)| \le |F(A_h)| + |F(A_h^r)|$. Then from (12) and (13) we get

(14)
$$\sum_{h\in J} |F(A_h^c)| \leq \sum_{h\in J} |F(A_h)| + \sum_{h\in J} |F(A_h^r)| < 3\varepsilon_1 .$$

It also follows from the definitions of A_h^r and A_h^c that for each $h \in J$

$$\left|\sum_{j} \left(F(\beta_j^h) - F(\alpha_j^h) \right) g(\beta_j^h) \right| \le \left(|F(A_h^r)| + |F(A_h^c)| \right) ||g||_{\infty} \quad .$$

Therefore by (13), (14) and (5) we get

(15)
$$S_1 \leq 5\varepsilon_1 \|g\|_{\infty} < \frac{\varepsilon}{3} .$$

Finally summing up the inequalities (9), (11) and (15) and taking (8) and (10) into account we obtain the estimate $|\sum_{h} f(x_{h})g(x_{h})|A_{h}| - \Phi(A)| < \varepsilon$ for any ε -regular δ -fine tight partition of A. Thus we have proved that fg is R_{t}^{*} -integrable on A and that $\Phi(A)$ is the R_{t}^{*} -integral of fg on A.

The cases of the R_o^* -integral and the R_s^* -integral are in fact simpler. For the R_o^* -integral we don't need Lemma 3 to get (13) as it follows directly from Lemma 2 applied to $\{(A_h^r, x_h)\}$.

In the case of the R_s^* -integral we have just one member in the inner sum of S_1 in (10), and so there is no need to split the figure A_h into two subfigures A_h^+ and A_h^- to get the desirable estimate.

Note that we have also proved that for R_o^* - or R_s^* - or R_t^* -integrable function f formula (1) holds if we replace H-integral by the corresponding R^* -integral.

References

[BGP] B. Bongiorno, M. Giertz and W. F. Pfeffer, Some non absolutely convergent integrals in the real line, Boll. U.M.I., (7) 6-B (1992), 371-402.

- [G] R. A. Gordon, Equivalence of the generalized Riemann and restricted Denjoy integrals, Real Analysis Exchange, 12 (1986-87), 551-574.
- [H] R. Henstock, General theory of integration, Clarendon Press, Oxford, 1991.
- [MP] J. W. Mortensen and W. F. Pfeffer, *Multipliers for the generalized Riemann integral*, J. Math. Analysis and Appl. (to appear).
- P.Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.
- [S] S. Saks, Theory of the integral, Dover, New York, 1964.