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MULTIPLIERS FOR SOME GENERALIZED
RIEMANN INTEGRALS IN THE REAL
LINE

Let R be the real line. If E C R, then |E| and d(E) respectively denote
the Lebesgue measure and the diameter of E. An interval is always a compact
nondegenerate subinterval of R. A figure on an interval A=[a,b] is, by defi-
nition, a finite nonempty union of subintervals of A. A collection of figures is
called nonoverlapping whenever their interiors are disjoint. All functions we
consider are real-valued.

Let F be a function on an interval A and let B be a figure on A with n
connected components [ay,b1],.. ., [@n, bn]. Then we set ||B||=2n and F(B) =
S h=1[F(bx) — F(as)]. In particular F([a,b]) = F(b) — F(a). This notation
leads to no confusion as the notion of the image of a set under a function is
never used this paper.

The regularity of B with respect to a point £ € R is the number

|B|

r(B:2) = WBT En 1Bl

If 7(B,z) > € > 0, the figure B is called e-regular with respect to z.

For each subset J of {1,2,...,n} the set Ujes[a;, b;] will be called a sub-
figure of B.

A partition in A is a collection (possibly empty) {(A1,z1),...,(4p,zp)}
where Ay, ..., Ap are nonoverlapping figures on A and z,, ..., z, are points of
A. If Up Ay = A, then the partition is called a partition of A.

A gage on A is a positive function § defined on A. Let € > 0 and let § be
a gage on A. A partition {(As,zp):h=1,...,p} in A is called:
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1) special if Ay, is an interval for h =1,...,p;

2) tightifzp € Apforh=1,...,p;

3) e-regularif r(Ap,zp) >eforh=1,...,p;

4) é-fine if d(ApUzp) < é(zp) for h=1,...,p.

In [BGP] the following definition was introduced.

Definition 1 We say that a function f on A is R}-integrable on A if there is a
real number I which satisfies the following condition: given € > 0, there exists
a gage 6 such that |35 _, f(zn)|An| — I| < € for each e-regular é-fine partition
{(An,zn) : h =1,...,p} of A. If the inequality holds only when the partition
is also special or tight or special and tight, we say that f s, respectively, R;-
or R} - or R},-integrable on A.

It is clear that the R},-integral is the usual Henstock integral (H-integral)
which in turn coincides with the classical Denjoy-Perron integral (see [H] or
[G]). It is proved in [BGP] that the R}-, R}- and R;-integrals are properly
included in the H-integral.

It is known (see [L] and [S]) that for each H-integrable function f and for
each function g of bounded variation, the function fg is also H-integrable and
the integration by parts formula holds:

' b b
(1) (H) ] fodt = [Fl’ - (L) / Fdg

where F(z) = (H) [T fdt.

In this paper we prove that any function g of bounded variation is a mul-
tiplier also for the families of R}-, R};- or R;-integrable functions. For g a
Lipschitz function this problem was considered in [BGP, Corollary 4.3 and Re-
mark 4.4] and in the multidimensional case in [MP]. The question of whether
our present result can be extended to the multidimensional case is open.

We need the following lemmas.

Lemma 1 (See [BGIP, Lemma 2.12].) Let ® be a function on A which has
a finite derivative ® (z) at an interior point ¢ of A. Given € > 0, there

is a positive § such that |<I>'(:c)]B] —<I>(B)| < ¢€|B| for each figure B with
d(BU{z}) < é and r(B,z) > €.

Lemma 2 (See [BGP, Proposition 3.3].) Let f be integrable on A in one of
the senses described in Definition 1. Given € > 0, there is a gage § in A such
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that Y5 _, If(a:;,)[Ahl - fA;. fd:c| < € for each §-fine partition {(An,zh) : h =
1,...,p} in A which is e-regular or e-regular special or e-regular tight or e-
regular special and tight according to whether the integral is interpreted as R},
or R; or R} or R;,, respectively.

Lemma 3 Let F be a continuous function on A and suppose for a givene > 0,
a given gage 6 and a given set of points {z1,...,z,} the inequality

(@) S IF(B)l <,
h

holds for each e-regular §-fine tight partition {(Bp,zs)} in A. Let {(An,zs) :
h = 1,...,p} be a é-fine tight partition in A with the same set of points
{z1,...,2zp}. Then, if for each h =1,...,p the figure A} is a subfigure of A
which is 4e-regular with respect to x;, we have ), |F(A})| < 2¢ .

ProoOF. We define a sequence of new partitions in A. Note that it might be
that z, does not belong to A} but it does belong to A,. We put for each
n=12,...and foreach h=1,...,p

h = AT U (n) p(n) ;
hUlay’,by’] otherwise

where z; € [a{™,60] C Ax, |F(6{™) = F(a{™)| < kg and ™ — a{® <
d(A;U{zs}). Then for each n we have z; € B}, d(B,(:')U{:c,,}) < 2d(ArU{zn})
and || B{”||< 2(| 43 || and so

. |B(")|
r(By, o) = o 2
d(Bh U{zn}) ”Bh |
A _rdpe)
4d(A}, U{za}) I 471l 4

Thus for n fixed {(B,(,"),:ch)} is an e-regular d-fine tight partition in A and
we get from (2) that for all n we have ), IF(B,(,"))l < €. Since F(B,(l")) =

F(AL) + F([aﬁ"), bg")]) or F(B\™) = F(A}), for all n we have the estimate
1
IR < Y IFB) + Y IF (e, )] < e+ —.
h h h

Letting n — oo we obtain ), |F(A4})| < € < 2¢ as required.0
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Theorem 1 Let f be integrable on A = [a, b] in one of the senses of Definition
1 and let g be a function of bounded variation on A. Then fg is integrable on
A in the same sense.

PRrooF. The R},-integral case is known as it is covered by formula (1). We are
going to give a proof for the case of the R}-integral. The proofs for the other
cases can be obtained in a similar manner with some modifications which are
indicated below.

Let F(z) = (Ry) [ f(t)dt. As R;-integral is included in H-integral, we
can use the integration by parts formula (1) for interval [a, z]:

3) (H) / " fgdt = [Fgl? - (L) / “Fdg.

Define ®(z) = (H) [ fgdt, E = {z € A : ®'(z) = f(z)g(z)} and N =
[a,b] \ E. It is clear that |[N| = 0. Without loss of generality we can suppose
that f(x) = 0 for each z € N and g(z) is increasing and positive on A.

Now fix € > 0. For each z € F we can apply Lemma 1 to find é;(z) > 0
such that the inequality

(4) |f(z)9(=)|B| - ®(B)]| <

holds for each figure B with d(B U {z}) < é;(z) and (B, z) > ¢/3(|A| + 1).
Next we are to define a gage for £ € N. We apply Lemma 2 to find
d2(z) > 0 for function f and for

(5)

£
1= ——
' T 16(Mg Ml +1)

instead of €, where || g||cc stands for the sup-norm. We also choose ¢ > 0 so
that

€
6 Flz)-F(y)|< 757—/———=ifz,y€EAand |z —y|<0o.
©  VF@-FO)< g o3l
(We are using the fact that F is uniformly continuous on [a, b].) Now we put
_ 4 (:c) if z€eF
(7) §(=) = { min(dz(z),s) if zE€N .

Having chosen a gage & let {(Ax, z4)} be an e-regular d-fine tight partition
of A. Now to prove the statement of the theorem we estimate the sum

I22n f(zn)g(zn)|An| — ®(4)] <

Zh |f(zn)g(zn)|An| — ®(An)| < Ehel +Zhe.lv

(8)
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where I is the set of all those indices h for which z;, € E and J is the set of
all those h for which z, € N.

Taking into account that r(Ax,zs) > € > €/3(|A| + 1) and applying (4) to
Ap, h €I, we get

9 d.<

her

W™

To estimate ) . ; note that f(zs) = 0 for z5 € N. Using (3) and putting
Ap =U; [a}',ﬂ]’-‘] we compute

D=3 104

heJ heJ
8
= 1> (F(ﬂ?)g(ﬂ}’) — F(ah)g(al) - / ,. ng)
hedJ| j of .
=SS (F(8h) - F(e) 9(8))
hed | j
(10) +F(a}) (9(82) — 9(e)) = F(&) (9(8)) — 9(a}))]
<SS (F(8h) - F(e) 9(8D)
hedJ| j
+ 33 |F(ah) - Fi&)] (9(8F) = g(el))
heJ j )
=5+,

where we have applied the mean value theorem to choose ; € [a}, B}]. From
(6) and (7) we conclude that

3 3
11 S < 9lglleo< Z.
(1) S Blglle #0171 3

Now for each index h € J denote by A} a subfigure of A; which is the
union of all those connected components of A, on which the increments of
F are positive and by A} the complementary subfigure of A,. Now |Ax| =
|AF|+]Aj | and one of these two subfigures has measure equal or greater than
|An|/2. Denote this figure by A} and the complementary subfigure by Aj.
Since r(An,zr) > €, it is easy to check that r(A},zx) > §. Then (Ax,zs) is
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also €;-regular and (A}, zp) is 4e;-regular (see (5)). Noting once again that
f(zn) =0 for h € J we can apply Lemma 2 to get

(12) Yo IF(An)l <&

heJ

and Lemma 3 to get

(13) D IF(AR)] < 261 .

heJ
Since F(Ap) = F(A})+ F(A;) , we have |F(A$)| < |F(An)|+|F(A})| . Then
from (12) and (13) we get

(14) STIF(ARI < ST IF(AR)+ Y IF (A7) < 361 .

heJ heJ heJ

It also follows from the definitions of A} and Aj, that for each h € J

Y (F(B}) = F(a}) 9(B])| < (IF(A)I+IF(A)D NI glleo -
i

Therefore by (13), (14) and (5) we get

€

3

Finally summing up the inequalities (9), (11) and (15) and taking (8) and
(10) into account we obtain the estimate |y, f(zn)g(zn)|An| — ®(A)| < € for
any e-regular é-fine tight partition of A. Thus we have proved that fg is
R;-integrable on A and that ®(A) is the R;-integral of fg on A.

The cases of the R}-integral and the R}-integral are in fact simpler. For
the R}-integral we don’t need Lemma 3 to get (13) as it follows directly from
Lemma 2 applied to {(A},z5)}.

In the case of the R}-integral we have just one member in the inner sum
of S; in (10), and so there is no need to split the figure A into two subfigures
A} and A} to get the desirable estimate. a

Note that we have also proved that for R}- or R;- or R;-integrable function
f formula (1) holds if we replace H-integral by the corresponding R*-integral.

(15) S1 < el gllo<
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