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MAXIMAL ADDITIVE AND MAXIMAL
MULTIPLICATIVE FAMILY FOR THE
CLASS OF SIMPLY CONTINUOUS
FUNCTIONS

Abstract

A function f: X — R is simply continuous if for each open set V'
in IR, the set f 'I(V) is the union of an open and a nowhere dense set
in X. The maximal additive and maximal multiplicative family for the
class of all simply continuous functions is investigated.

1 Introduction

In what follows X denotes a topological space. For a subset A of a topological
space Cl A and Int A denote the closure and the interior of A, respectively.
The letters N and R stand for the set of natural and real numbers, respectively.

If F is a family of real functions on X, then a family A(F) (MM(F) ) is
called the maximal additive (maximal multiplicative) family for F, if 2(F)
(9M(F) ) is the set of all functions f on X such that f+g € F (f-g € F) for
every g € F (see [4]).

We recall that a function f : X — Ris cliquish at a point z € X (see [10])
if for each ¢ > 0 and each neighborhood U of z there is a nonempty open set
G C U such that |f(y) — f(2)| < € for each y, z € G. A function f: X - R
is said to be cliquish if it is cliquish at each point z € X.

A function f : X — R is simply continuous (see [1]) if for each open set V
in R, the set f~1(V) is the union of an open set and a nowhere dense set in
X.

A function f : X — R is quasicontinuous at a point £ € X (see [10]) if
for each neighborhood U of z and each neighborhood V of f(z) there is a
nonempty open set G C U such that f(G) C V. Denote by Q; the set of
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all points at which f is quasicontinuous. If Q; = X, then f is said to be
quasicontinuous.

It is easy to see that every quasicontinuous function is simply continuous
and cliquish. In [11] it is shown that if X is a Baire space, then every simply
continuous function f : X — R is cliquish.

In [3] the set Sy of all simply continuity points of f : X — R is defined as
Sy = {x € X : for each open neighborhood V' of f(z) and for each neighbor-
hood U of z, the set f~1(V)\Int f~!(V) is not dense in U} . It is shown
that f is simply continuous iff Sy = X. Further it is shown that Q; C S; and
the set Sy \ Cy (where C; is the set of all continuity points of f) is of the first
category.

The aim of this paper is to investigate the maximal additive and the max-
imal multiplicative family for the class of all real simply continuous functions.
Denote by S the set of all simply continuous functions and let

T=A{f: X 5> R:UG(f) is dense in X},

where G(f) = {G C X : G isopen and f is constant on G}. (The class T
contains nonmeasurable functions (for X = R) ). We shall show that 2(S) =
M(S) = T for “nice” spaces X.

In [3] it is shown that the set S; is pre-closed (i.e. ClInt Sy C S;). From
this we obtain

Lemma 1.1 If X \ Sy is nowhere dense, then f is simply continuous.

PROOF. We have § = Int Cl (X \ Sy) = Int (X \Int Sf) = X \ Cl Int S;.
Therefore X = ClInt Sy C S;.0

The following lemma is proved in [2]. We recall that a m-base for X is a
family A of open subsets of X such that every nonempty open subset of X
contains some nonempty A € A (see [12]).

Lemma 1.2 (See [2] .) Let X be a topological space such that the family of all
open connected sets is a w-base for X. Let h: X — R be a cliquish function
such that h=1(0) is dense in X. Let g : X — R be a continuous function
which is constant on no nonempty open subset of X. Then f = g+ h is simply
continuous.

Remark 1.1 The assumption that X has a w-base of open connected sets
cannot be omitted. Let X = C (the Cantor set) and let [0,1]\C = U3%, (an, bn)

n=1

(contiguous intervals). Define g(z) =z for all z € X and h(z) = = ; In for
z = an, h(z) = 0 otherwise. Then g is continuous and injective, h is cliquish

and h=1(0) is dense in X. However f = g + h is not simply continuous.
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The following lemma is obvious.

Lemma 1.3 Let X, Y and Z be topological spaces.

1) Iff: Y > Z is continuous and g : X — Y is simply continuous, then
f o g is simply continuous.

2)If f:' Y = Z is a homeomorphism, then g: X —'Y is simply continuous
if and only if f o g is simply continuous.

2 Result

Theorem 2.1 Let X be a Baire space such that the family of all connected
open sets is a w-base for X and there is a dense set in X of the first category.
Then A(S) =M(S) =T.

ProoF. T C A(S):
Let f € T and g € S. Let ¢ € G(f). Then there is an open G such that
z € G and f is constant on G. Therefore f(y) = a for each y € G and some
a € R. Let U be a neighborhood of z and V be an open neighborhood of
(f+9)(z) =a+g(z). Then V—-a={2€R: z2+a € V} is an open
neighborhood of g(z). Since g~*(V —a)\Int g=!(V —a) is not dense in UNG
and GN(f+9)~}(V) = GNg=}(V —a), we have (F+9)~} (V)\Int (f+9)~1(V)
is not dense in U. Therefore z € Sy;4. This yields UG(f) C Sp4+g. However
UG(f) is open and dense. Hence X \ Sy4g is nowhere dense and hence by
Lemma 1.1 f + g is simply continuous, i.e. f € 2(S).

AS)CT:
Let f ¢ T. We shall show that there is ¢ € S such that f + g ¢ S. Evidently,
we can assume that f € S (otherwise we choose g = 0). Since f ¢ T, the set
UG(f) is not dense in X and hence there is a nonempty open subset B of X
such that BN (UG(f)) = @. Then f is constant on no nonempty open subset
of B. We have two possibilities:

a) The set B\ Cy is not dense in B.
Then there is a nonempty open H C B such that H C Cy. Therefore f
is continuous on H and it is constant on no nonempty open subset of H.
Evidently H satisfies the assumptions of Theorem 2.1.

Let T C H be a dense set in H of the first category. Then T = US%, Ty,
where each T,, C H is a nowhere dense set in H. We can assume that the sets
T, are pairwise disjoint. Define h: X — R as

L forzeT,,
h(z) = { 6 otherwise.
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Since h~!((e,00)) is a nowhere dense set for each € > 0, the function h is
cliquish. Further h=1(0) is dense in X. However, h=1((0,00)) = T is a dense
set in H with the empty interior and hence h is not simply continuous.

We put ¢ = h— f. Then gjg = hjg — fig is a cliquish function on H,
(hygr)~1(0) is dense in H and fjg is continuous and constant on no nonempty
open subset of H. Hence by Lemma 1.2 g|g is simply continuous-on H. Since
h =0 on X \ H, we have g is simply continuous on Int (X \ H). Therefore
Sy CHU(X \ClH). However X \ (HU (X \Cl H)) =Cl H\ H is nowhere
dense and thus X \ Sy is nowhere dense. According to Lemma 1.1 g € S.
However f+g=h¢S.

b) The set B\ C; is dense in B.

Since X is Baire and f is simply continuous, X \ Cy is of the first category ([1])
and therefore Cy is dense in X. Denote by U (z) the family of all neighborhoods
of z and C(f,z) = Nyeu(s) C1 F(Cr NV).

Further set

E = {z€eB:C(f,z)=0}

D = {z€B:C(f2) = {f)).
Let z € Cy and W = [f(z) + 1, f(z) — 1]. Then there is an open neighborhood
Uz of z such that Cl f(Uz) C W. Let u € Uz. Then (Cl f(U:NUNCy))veu(u)
is a family of closed subsets of W with the finite intersection property. Hence

Nueuw)Cl f(UNU: NCy)) # 0 and therefore C(f,u) # 0. This yields
U; N E = . From this we obtain

(1) CsNCIE =9
and therefore E is a nowhere dense set. Evidently C; C D. Now put

A = {£€B:VUEeU(z)VneNIHeUNCs: f(t) > n},
Ay {zeB: VU elU(z)VYneNHeUNCy: f(t) < —n},
Az = D\(AlﬂAz).

Let J C B be a nonempty open set. Then there is v € JNCy. Hence there
is an open neighborhood P C J of v and k& € N such that f(P) C (—k,k).
Therefore PN A; = 0 = PN Ay and A;, A, are nowhere dense sets. Hence
there is a nonempty open set L C B such that L N (4; UA; UE) = 0. Since
Cy C D, we have D is dense in L.

Now we shall show that the set B \ (D U E) is not nowhere dense in B.
Suppose to the contrary that B\ (D U E) is nowhere dense in B. Then there
is a nonempty open M C L such that M N (B \ (DU E)) = 0. Therefore
M CDUE and since LN (A; UA; UE) =0, M C As.
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Let £ € M. Then there is a neighborhood U C M of z and n € N such
that f(t) € (—n,n) for each t € UNC}. Then for every t € UNCy there is an
open neighborhood U; C U such that f(U;) C (—n,n). Let K = Utevnc, Ut.
Then K is an open dense set in U and f(K) C (—n,n).

Since B\ Cy is dense in B, there is u € K \ Cy. Since u ¢ Cy, there is
€ > 0 such that for each neighborhood S C K of u there is wg € S such that

2 |f(u) - f(ws)| > 2.

Since K C U, we haveu € M C D.

Suppose that for each neighborhood P C K of u there is yp € PNC} such
that |f(yp) — f(u)| > €. Then f(yp) € [—n, f(u) —e]U[f(u) + ¢, n]. Therefore
(CLF(PNCs)\ (f(u) —¢, f(u) + €)) Peu(u),pck is a family of closed subsets
of [—n, n] with the finite intersection property. Therefore there is

se [ CLAPNC)H\(f(v) — ¢ fu) +e).

PelU(u),PCK

Thus s € C(f,u) and since |s — f(u)| > €, we obtain s # f(u). However then
u ¢ D, a contradiction.

Therefore there is an open neighborhood Z C K of u such that f(y) €
(f(u) — €, f(u) +¢) for each y € ZNCy. Since wz € Z C D, there is an open
neighborhood J C K of wz such that |f(wz) — f(t)| < € for each t € J N Cy.
Since J N Z is a nonempty open set, there is z € J N Z N Cy. Then we have
|f(wz) — f(2)| < € and |f(2z) — f(u)| < €. Therefore

1f(w) = f(wz)| < 1f(u) = f(2)] +1f(2) - F(wz)] < 2,

contrary to (2). Therefore the set B\ (D U E) is not nowhere dense in B.

Then there is a nonempty open H C B such that B\ (DU E) is dense in
H. If z € B\ (DUE), then there is #* € C(f, z) such that f(z) # z*. Define
a function ¢ : X — R by

z*, ifce H\(DUE),
g9(z) = { f(z), ifte HN(DUE),
0, ifzeX\H.

We shall show that g is simply continuous. Let € Cy N H and ¢ > 0.
Then there is an open neighborhood F C H of z such that f(F) C (f(z) —
£, f(z)+%). According to (1) U = F\Cl E is an open neighborhood of z. Let
u€U. Thenu ¢ E. If u € HN D, then g(u) = f(u) € (f(z) - 5, f(z) + 5)-
If u ¢ D, then u € H\ (DU E) and hence g(u) € C(f,u) C Cl f(F) C
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[f(z) -5, f(z)+ 5] C (f(z) —¢, f(z) +¢€). Therefore z € Cy. If z € X\ Cl H,
then evidently z € Cy. Therefore

3) (CsNnH)U(X\CIH)CC,

and Cjy is dense set in X.

Let z € H\ E.- Let U C H be a neighborhood of ¢ and € > 0. Since
g(z) € C(f,z), we have f(UNCs)N(g(z) — 5,9(z)+5)#0. Let t eUNCy
be such that |g(z) — f(t)] < €. By (3) we have t € Cy. Since Cy C D, we
have g(t) = f(t). Then there is a nonempty open G C U such that ¢t € G and
|g(u) — g(t)| < § for each u € G. Then for each u € G we have

lg(u) — g(z)| < lg(u) — g(t)] + |9(t) — g(z)| < e.

Therefore z € Q.

This and (3) give X \ Q; C EU(Cl H \ H) and thus X \ Qg is a nowhere
dense set. Since Qg C Sy, according to Lemma 1.1 we get that g is a simply
continuous function and also —g € S§. However the function h = f — g is not
simply continuous, since h~}(R\ {0}) N H = H \ (DU E) is a dense set with
the empty interior in H

T CM(S):

IfceRand f: X — R is simply continuous, then similar to the proof that
¢+ f we can prove that c- f is simply continuous. Let f € T and g € S. Then
UG(f) C Sy.g and by Lemma 1.1 f-g € S.

MS)CT: _

Let f ¢ 7. We can assume that f € S. (Otherwise we choose g = 1.)

a) Let f be positive. Then by Lemma 1.3 In f ¢ 7 and since %(S) = T,
there is a simply continuous function h : X — R such that In f + h is not
simply continuous. Then by Lemma 1.3 ¢* € S and f-eh = eln/+h ¢ .
Similarly for negative f.

B) Let f be positive (negative) on some nonempty open set G. Then by a)
there is a simply continuous function A : G — R such that f - h is not simply
continuous (on G). Let g : X — R, g(z) = h(z) for £ € G and-g(z) = 0
otherwise. Then by Lemmal.lgeSand f-g¢S.

) Let f~1((0,00)) be dense on some nonempty open set G. Then simply
continuity of f gives Int f=1((0,00)) # @ and by B3) there is g € S such that
f-9¢S. Similarly if f~!((—00,0)) is dense on some nonempty open set G.

8) Let f~1((0,00)) and f~!((—00,0)) be nowhere dense sets. Then there
is a nonempty open dense set G such that f(y) = 0 for each y € G. However
then f € T, a contradiction.]
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3 Remarks

Remark 3.1 By [8, Proposition 1.9] every Ti-space with no isolated points
having a o-locally finite base has a dense subspace of the first category.

Remark 3.2 Theorem 2.1 does not hold for an arbitrary topological space.
Let X be as in [5], i.e. X = N, D an ultrafilter on X, which contains no
finite sets and & = D U {0} be a topology on X. Then each function on X
is simply continuous and each nonempty open subset of X is infinite.” Hence

S=R¥=AS)=MS)#7T.

Denote by C the class of all continuous functions and by @ the class of all
quasicontinuous functions. Further set

¢ = {f: X > R: X\Cy is nowhere dense},
Q* = {f: X > R: X\Qy is nowhere dense}.

By [9] Q* is the lattice generated by Q (if X is a separable metrizable space
without isolated points). In [7] it is shown that %(Q) = C and in [6] that
MQ) ={feQ: ifz ¢ Cy, then f(x) =0and z € Cl (C; N f~1(0))} (X
is an arbitrary topological space). Therefore A(Q) # 9M(Q). We shall show
that for @* we have 2(Q*) = M(Q*¥).

Theorem 3.1 Let X be a Baire space. Then A(Q*) = M(Q*) = C*.

PROOF. It is easy to see that Qs NCy C Qs4g N Qys.g. Hence X \ Qpyy C.
(X \Qf)U (X \ Cy). Therefore C* C A(Q*) NIM(Q*).

Let f € @*\ C*. Then there is a nonempty open set B such that B\ Cy is
dense in B. The function g from part b) of the proof of Theorem 2.1 is such
that X \ Qy is nowhere dense and X \ Q;_g is not nowhere dense.

Now if £~1(0) is dense, then there is an open dense set G such that f(y) = 0
for every y € G. However then X\ C; is nowhere dense, a contradiction. Hence
f£71(0) is not dense and the proof is the same as for M(S).0
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