Genowefa Rzepecka and Władysław Wilczyński, Łódź University, ul. Stefana Banacha 22, Łódź 90-238 Poland (email: wwil@PLUNLO51.BITNET)

ON THE TRANSFORMATIONS OF MEASURABLE SETS AND SETS WITH THE BAIRE PROPERTY

It is well known (see, e.g., [1], p. 901), that if $\{x_n\}_{n \in \mathbb{N}}$ is a sequence tending to zero and $A \subset [0, 1]$ is a measurable set, then $\lim_{n\to\infty} \lambda(A \triangle (A + x_n)) = 0$, i.e. the sequence of characteristic functions of the sets $(A + x_n)$ converges in measure to a characteristic function of the set A. In [4] it was shown that for a set $A \subset [0, 1]$ with the Baire property the situation is even better: the sequence of characteristic functions of the sets $(A + x_n)$ converges to a characteristic function of the set A except on a set of the first category. Also in [4] one can find an example showing that for measurable sets the convergence in measure cannot in general be improved to the convergence almost everywhere.

This paper is a continuation of [4]. We shall study the behaviour of the sequence of images $f_n(A)$ of a set $A \subset [0,1]$ when the sequence $\{f_n\}_{n \in \mathbb{N}}$ of continuous strictly increasing functions converges uniformly to the identity function (id).

Our first theorem together with its proof is completely analogous to theorem 2 in [4]. However, we shall present it below because: it is short, it is published in Russian and there is a possibility that this Georgian journal is not easily available now.

Theorem 1 If a set $A \subset [0,1]$ has the Baire property and $\{f_n\}_{n \in \mathbb{N}}$ is a sequence of continuous strictly increasing functions convergent uniformly to the identity function, then the sequence of characteristic functions of the sets $f_n(A)$ converges to a characteristic function of the set A except on a set of the first category.

PROOF. In the sequel χ_E will denote the characteristic functions of a set E. The set A can be represented in the following way: $A = (G \cup Y) \setminus Z$, where G

Key Words: sequences of homeomorphisms, images of measurable sets.

Mathematical Reviews subject classification: Primary: 26A48; Secondary: 26A46, 40A99, 28A20, 28A33

Received by the editors December 14, 1993

is an open set and Y, Z are sets of the first category. Put

$$P = Fr(G) \cup Y \cup Z \cup \bigcup_{n=1}^{\infty} f_n(Y) \cup \bigcup_{n=1}^{\infty} f_n(Z),$$

where Fr(G) is a boundary of G. Observe that P is a set of the first category. We shall show that $\lim_{n\to\infty} \chi_{f_n(A)}(x) = \chi_A$ for each $x \in [0,1] \setminus P$. Indeed, let $x \in ([0,1] \setminus P) \cap A$. We have $\chi_A(x) = 1$. Obviously $x \in G$. Hence for sufficiently large n we have also $x \in f_n(G)$. For all $n, x \notin f_n(Z)$, so for almost all $n \in \mathbb{N}$, $x \in f_n(G) \cup f_n(Y) \setminus f_n(Z) = f_n(A)$ and finally $\lim_{n\to\infty} \chi_{f_n(A)}(x) = 1 = \chi_A(x)$. Suppose now that $x \in ([0,1] \setminus P) \setminus A$. We have $\chi_A(x) = 0$. Since $x \notin Fr(G)$, we have $x \notin f_n(G)$ for sufficiently large n. Also $x \notin f_n(Y)$ for all n, so $x \notin f_n(G) \cup f_n(Y)$ for almost all $n \in \mathbb{N}$. Then $x \notin f_n(G) \cup f_n(Y) \setminus f_n(Z) = f_n(A)$ for almost all $n \in \mathbb{N}$, whence $\lim_{n\to\infty} \chi_{f_n(A)}(x) = 0 = \chi_A(x)$.

Now we shall study the case of a measurable set $A \subset [0, 1]$. Recall that each increasing function f can be represented as the sum of an absolutely continuous increasing function g and a singular increasing function h. This is known as a Lebesgue decomposition of a function f (cf. [2], theorem 8.13, p. 357). We shall always suppose additionally that h(0) = 0. The following lemma will be very useful in the proof of the main theorem:

Lemma 1 Let $f : [0,1] \to \mathbb{R}$ be an increasing continuous function and f = g + h its Lebesgue decomposition with g is absolutely continuous, h singular and h(0) = 0. If $B \subset \{x \in [0,1] : -\infty < f'(x) = g'(x) < +\infty\}$ is a measurable set such that $\lambda(B) = 1$ and $E = [0,1] \setminus B$, then

$$\lambda(f(E)) = \lambda(h(E)) = h(1).$$

PROOF. It is well known that if some function F has a finite derivative on a measurable set D, then F(D) is also measurable and $\lambda(F(D)) \leq \int_{D} |F'(x)| dx$ (see e.g., [2], theorem 8.7 p. 355 and theorem 8.10 p. 356). Hence $\lambda(h(B)) = 0$. Then

$$\lambda(h([0,1])) = h(1) - h(0) = h(1) \le \lambda(h(B)) + \lambda(h(E)) = \lambda(h(E)) \le \lambda(h([0,1])),$$

so $\lambda(h(E)) = h(1)$. To prove that $\lambda(f(E)) = \lambda(h(E))$ observe first that $f(B) \cap f(E) = \emptyset$ and $f([0,1]) = f(B) \cup f(E)$, so both sets are measurable. Further, from the absolute continuity of g and from the fact that $\lambda(B) = 1$ we

G. RZEPECKA AND W. WILCZYŃSKI

conclude that

$$\begin{aligned} f(1) - f(0) &= \lambda \left(f([0,1]) \right) = \lambda \left(f(B) \right) + \lambda \left(f(E) \right) \\ &\leq \int_B f'(x) \, dx + \lambda \left(f(E) \right) = \int_B g'(x) \, dx + \lambda \left(f(E) \right) \\ &= \lambda \left(g(B) \right) + \lambda \left(f(E) \right) = g(1) - g(0) + \lambda \left(f(E) \right) . \end{aligned}$$

Simultaneously, f(1) - f(0) = g(1) - g(0) + h(1) so $\lambda(h(E)) = h(1) \le \lambda(f(E))$. Now let $G \supset f(B)$ be an arbitrary open set. Then $f^{-1}(G) \supset f^{-1}(f(B)) =$

Now let $G \supset f(B)$ be an arbitrary open set. Then $f^{-1}(G) \supset f^{-1}(f(B)) = B$. Also

$$f^{-1}(G) = \bigcup_{n=1}^{\infty} (a_n, b_n),$$

where (a_n, b_n) are components of $f^{-1}(G)$. Hence

$$g(f^{-1}(G)) = g\left(\bigcup_{n=1}^{\infty} (a_n, b_n)\right) = \bigcup_{n=1}^{\infty} g((a_n, b_n)) \supset g(B)$$

It is easy to see that

$$\lambda(g(a_n, b_n)) = g(b_n) - g(a_n) \le f(b_n) - f(a_n) = \lambda(f((a_n, b_n)))$$

for each $n \in \mathbb{N}$. So

$$\begin{split} \lambda\left(g(B)\right) &\leq \lambda\left(g\left(\bigcup_{n=1}^{\infty}\left(a_{n},b_{n}\right)\right)\right) \\ &= \sum_{n=1}^{\infty}\left(g(b_{n}) - g(a_{n})\right) &\leq \sum_{n=1}^{\infty}\left(f(b_{n}) - f(a_{n})\right) \\ &= \lambda\left(\bigcup_{n=1}^{\infty}\left(f(a_{n}),f(b_{n})\right)\right) &\leq \lambda(G). \end{split}$$

From the arbitrariness of $G \supset f(B)$ we conclude that $\lambda(g(B)) \leq \lambda(f(B))$ and, we know that both sets g(B) and f(B) are measurable. Finally

$$f(1) - f(0) = g(1) - g(0) + h(1) = \lambda(g(B)) + \lambda(h(E)) = \lambda(f(B)) + \lambda(f(E)),$$

so $\lambda(h(E)) \geq \lambda(f(E))$, which ends the proof.

Corollary 1 $\lambda(f'(x)(B)) = \int_B f'(x) dx = \int_B g'(x) dx$.

Theorem 2 Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous increasing functions convergent uniformly to the identity function. Then $\lim_{n\to\infty} \lambda^*(A \triangle f_n(A)) =$ 0 for every measurable set $A \subset [0, 1]$ if and only if for the sequences of terms $\{g_n\}_{n\in\mathbb{N}}$ and $\{h_n\}_{n\in\mathbb{N}}$ from the Lebesgue decomposition of $\{f_n\}_{n\in\mathbb{N}}$ the following conditions are fulfilled:

- 1. $\lim_{n\to\infty} h_n(1) = 0$ (i.e. $\{h_n\}_{n\in\mathbb{N}}$ converges uniformly to 0)
- 2. the sequence $\{g_n\}_{n\in\mathbb{N}}$ consists of uniformly absolutely continuous functions (i.e. for each $\varepsilon > 0$ there exists $\delta > 0$ such that for each $n \in \mathbb{N}$ and for each finite collection of nonoverlapping intervals $[a_1, b_1], [a_2, b_2], \ldots, [a_k, b_k]$ contained in [0, 1] if $\sum_{i=1}^k (b_i a_i) < \delta$, then $\sum_{i=1}^k (g_n(b_i) g_n(a_i)) < \varepsilon$).

PROOF. Suppose first that (1) or (2) is not fulfilled. We shall show that there exists a measurable set $A \subset [0,1]$ for which $\lambda^*(A \triangle f_n(A))$ does not converge to 0.

Indeed, if (1) is not fulfilled, then there exists $\varepsilon > 0$ and an increasing sequence of natural numbers $\{n_m\}_{m \in \mathbb{N}}$ such that $h_{n_m}(1) \ge \varepsilon$ for each m.

Let $E_{n_m} \subset [0,1]$ be a set such that $\lambda(E_{n_m}) = 0$ and

$$\lambda(h_{n_m}(E_{n_m})) = h_{n_m}(1)$$

(it suffices to take $E_{n_m} = [0,1] \setminus \{x \in [0,1] : -\infty < f'_{n_m}(x) = g'_{n_m}(x) < \infty\}$). Put $A = \bigcup_{m=1}^{\infty} E_{n_m}$. We have obviously $\lambda(A) = 0$ and $f_{n_m}(A) \supset f_{n_m}(E_{n_m})$ for each m (both sets are measurable), so

$$\lambda(f_{n_m}(A)) \ge \lambda(f_{n_m}(E_{n_m})) = \lambda(h_{n_m}(E_{n_m})) \ge \varepsilon,$$

whence $\lambda(A \triangle f_n(A))$ does not converge to 0.

Now suppose that (2) is not fulfilled. It means that there exist $\varepsilon_0 > 0$ such that for each positive integer m there exist n_m and a set I_m being finite union of nonoverlapping intervals such that $\lambda(I_m) < 1/m$ and $\lambda(g_{n_m}(I_m)) \ge \varepsilon_0$. It is not difficult to observe that a sequence $\{n_m\}_{m\in\mathbb{N}}$ diverges to infinity. Choose an increasing sequence $\{m_p\}_{p\in\mathbb{N}}$ such that $\sum_{p=1}^{\infty} \frac{1}{m_p} < \frac{\varepsilon_0}{2}$. Put $A = \bigcup_{p=1}^{\infty} I_{m_p}$. We have $\lambda(A) < \frac{\varepsilon_0}{2}$ and

$$\lambda(f_{n_{m_p}}(A)) \ge \lambda(f_{n_{m_p}}(I_{m_p})) \ge \lambda(g_{n_{m_p}}(I_{m_p})) \ge \varepsilon_0,$$

so $\lambda^*(A \triangle f_{n_{m_p}}(A)) \geq \frac{\varepsilon_0}{2}$ for each $p \in \mathbb{N}$, whence $\lambda^*(A \triangle f_n(A))$ does not converge to 0.

Suppose now that (1) and (2) are fulfilled. Fix $\varepsilon > 0$. Let $\delta > 0$ be a number associated with $\varepsilon/4$ in (2). Let C be a finite union of disjoint intervals

G. RZEPECKA AND W. WILCZYŃSKI

such that $\lambda(A \triangle C) < \min(\delta, \frac{\epsilon}{4})$. For each positive integer n we have

$$A \triangle f_n(A) \subset (A \triangle C) \cup (C \triangle f_n(C)) \cup (f_n(C) \triangle f_n(A))$$

= $(A \triangle C) \cup (C \triangle f_n(C)) \cup (f_n(C \triangle A)).$

Since $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to the identity function we conclude that there exists $n_1 \in \mathbb{N}$ such that for $n > n_1$ we have $\lambda(C \Delta f_n(C)) < \frac{\varepsilon}{4}$.

Let $B_n = \{x \in [0,1]: -\infty < f'_n(x) = g'_n(x) < \infty\}$ and $E_n = [0,1] \setminus B_n$. We have

$$\lambda^* (f_n(C \triangle A)) \leq \lambda (f_n ((C \triangle A) \cap B_n)) + \lambda^* ((f_n(C \triangle A) \cap E_n))$$

$$\leq \int_{(C \triangle A) \cap B_n} f'_n(x) dx + \lambda (f_n(E_n))$$

$$= \int_{(C \triangle A) \cap B_n} g'_n(x) dx + \lambda (f_n(E_n))$$

By Lemma 1 we conclude that $\lambda(f_n(E_n)) = \lambda(h_n(E_n))$ and since g is absolutely continuous, we have

$$\int_{(C \Delta A) \cap B_n} g'_n(x) \, dx = \lambda(g_n(C \Delta A) \cap B_n).$$

Since $\lambda((C \triangle A) \cap B_n) < \delta$, from the uniform absolute continuity we obtain easily $\lambda(g_n(C \triangle A) \cap B_n) < \frac{\epsilon}{4}$. Let $n_2 \in \mathbb{N}$ be such that $h_n(1) < \frac{\epsilon}{4}$ for $n > n_2$ Then for $n > n_2$ we have

$$\lambda(f_n(C \triangle A)) \le \lambda(g_n(C \triangle A) \cap B_n)) + \lambda(h_n(E_n)) < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}$$

Finally for $n > \max(n_1, n_2)$ we obtain $\lambda^*(A \triangle f_n(A)) < \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon$, whence $\lim_{n \to \infty} \lambda^*(A \triangle f_n(A)) = 0$.

References

- [1] N. K. Bari, Trigonometric series, Moscow 1961 (in Russian).
- [2] J. Foran, Fundamentals of real analysis, Marcel Dekker 1991, Pure and Applied Mathematics, 144.
- [3] I. P. Natanson, Theory of functions of a real variable, Moscow 1974 (in Russian).
- [4] W. Wilczyński, A. Kharazishvili, On the translations of measurable sets and sets with the Baire property, Bull. of the Acad. of Sciences of Georgia, 145, No. 1, (1992), 43-46. (in Russian, English and Georgian summary).